Mercury’s spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01

AUTHORS

Mark A. Wieczorek, Alexandre C. M. Correia, Mathieu Le Feuvre, Jacques Laskar, Nicolas Rambaux

ABSTRACT

The planet Mercury rotates three times about its spin axis for every two orbits about the Sun1,2, in a 3/2 spin–orbit resonance. This unique state has been explained by an initial rapid prograde rotation, which was then decelerated by tidal torques to the present resonance3,4,5,6. When friction at the core–mantle boundary is accounted for, capture into the 3/2 resonance occurs with a probability of only 26%, whereas the most likely outcome is capture into one of the higher-order resonances7. Here we use a numerical model of Mercury’s rotational evolution to investigate the consequences of an initial retrograde rotation of Mercury. We find that in this case, the planet would be captured into synchronous rotation, with one hemisphere always facing the Sun, with a probability of 68%. Strong lateral variations in the impact cratering rate would have existed, consistent with the observed distribution of large impact basins. Escape from this highly stable resonance can be initiated by the momentum imparted by large, basin-forming impact events8,9,10, and subsequent capture into the 3/2 resonance is likely. During synchronous rotation, substantial quantities of volatile deposits would have accumulated on the hemisphere facing away from the Sun, potentially explaining the existence of sublimation hollows on Mercury’s surface11. More... »

PAGES

18-21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ngeo1350

DOI

http://dx.doi.org/10.1038/ngeo1350

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035371206


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Institut de Physique du Globe de Paris, Univ Paris Diderot, 4 avenue de Neptune, 94100 Saint-Maur des Foss\u00e9s, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wieczorek", 
        "givenName": "Mark A.", 
        "id": "sg:person.07430751451.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430751451.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Aveiro", 
          "id": "https://www.grid.ac/institutes/grid.7311.4", 
          "name": [
            "Department of Physics, I3N, University of Aveiro, Campus Universit\u00e1rio de Santiago, 3810-193 Aveiro, Portugal", 
            "ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Correia", 
        "givenName": "Alexandre C. M.", 
        "id": "sg:person.012336354417.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012336354417.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Plan\u00e9tologie et G\u00e9odynamique de Nantes", 
          "id": "https://www.grid.ac/institutes/grid.463945.9", 
          "name": [
            "Laboratoire de Plan\u00e9tologie et G\u00e9odynamique, Universit\u00e9 de Nantes, 2 rue de la Houssini\u00e8re, BP 92208, 44322 Nantes Cedex 3, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Feuvre", 
        "givenName": "Mathieu", 
        "id": "sg:person.013735527334.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013735527334.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laskar", 
        "givenName": "Jacques", 
        "id": "sg:person.01142167464.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167464.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France", 
            "UPMC Univ Paris 06, F-75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rambaux", 
        "givenName": "Nicolas", 
        "id": "sg:person.014525312356.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525312356.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/icar.1997.5713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000718639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(75)90011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001688542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(75)90011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001688542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/icar.2001.6788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001931196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/522364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004260484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icarus.2011.06.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009251588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/208575a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017877812", 
          "https://doi.org/10.1038/208575a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000je001384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019611737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0012-821x(03)00546-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019939907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2061240a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020223481", 
          "https://doi.org/10.1038/2061240a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsl.2009.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021948413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb090ib13p11289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024136225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027328987", 
          "https://doi.org/10.1038/nature02609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027328987", 
          "https://doi.org/10.1038/nature02609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icarus.2011.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035740932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/icar.2000.6544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036576305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icarus.2008.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038730293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb082i005p00743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039507877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icarus.2008.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039902201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icarus.2008.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041969824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/icar.1993.1059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047992827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icarus.2008.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048575430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icarus.2008.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048605641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011gl047294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048650148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb080i017p02417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051298886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/109947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058448557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/148762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058480053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1140514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1211681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465523"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-01", 
    "datePublishedReg": "2012-01-01", 
    "description": "The planet Mercury rotates three times about its spin axis for every two orbits about the Sun1,2, in a 3/2 spin\u2013orbit resonance. This unique state has been explained by an initial rapid prograde rotation, which was then decelerated by tidal torques to the present resonance3,4,5,6. When friction at the core\u2013mantle boundary is accounted for, capture into the 3/2 resonance occurs with a probability of only 26%, whereas the most likely outcome is capture into one of the higher-order resonances7. Here we use a numerical model of Mercury\u2019s rotational evolution to investigate the consequences of an initial retrograde rotation of Mercury. We find that in this case, the planet would be captured into synchronous rotation, with one hemisphere always facing the Sun, with a probability of 68%. Strong lateral variations in the impact cratering rate would have existed, consistent with the observed distribution of large impact basins. Escape from this highly stable resonance can be initiated by the momentum imparted by large, basin-forming impact events8,9,10, and subsequent capture into the 3/2 resonance is likely. During synchronous rotation, substantial quantities of volatile deposits would have accumulated on the hemisphere facing away from the Sun, potentially explaining the existence of sublimation hollows on Mercury\u2019s surface11.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ngeo1350", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040470", 
        "issn": [
          "1752-0894", 
          "1752-0908"
        ], 
        "name": "Nature Geoscience", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Mercury\u2019s spin\u2013orbit resonance explained by\u00a0initial retrograde and subsequent synchronous\u00a0rotation", 
    "pagination": "18-21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a87e481bbb0a11f700a5e8a9229f8abe50c180d796e5ec765f163e0555333e40"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ngeo1350"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035371206"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ngeo1350", 
      "https://app.dimensions.ai/details/publication/pub.1035371206"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000466.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/ngeo1350"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ngeo1350'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ngeo1350'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ngeo1350'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ngeo1350'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ngeo1350 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author Nc1d24528ea994cd98e45a641b4d8bf2f
4 schema:citation sg:pub.10.1038/2061240a0
5 sg:pub.10.1038/208575a0
6 sg:pub.10.1038/nature02609
7 https://doi.org/10.1006/icar.1993.1059
8 https://doi.org/10.1006/icar.1997.5713
9 https://doi.org/10.1006/icar.2000.6544
10 https://doi.org/10.1006/icar.2001.6788
11 https://doi.org/10.1016/0012-821x(75)90011-4
12 https://doi.org/10.1016/j.epsl.2009.05.022
13 https://doi.org/10.1016/j.icarus.2008.02.017
14 https://doi.org/10.1016/j.icarus.2008.02.022
15 https://doi.org/10.1016/j.icarus.2008.04.011
16 https://doi.org/10.1016/j.icarus.2008.12.017
17 https://doi.org/10.1016/j.icarus.2008.12.034
18 https://doi.org/10.1016/j.icarus.2011.03.010
19 https://doi.org/10.1016/j.icarus.2011.06.021
20 https://doi.org/10.1016/s0012-821x(03)00546-6
21 https://doi.org/10.1029/2000je001384
22 https://doi.org/10.1029/2011gl047294
23 https://doi.org/10.1029/jb080i017p02417
24 https://doi.org/10.1029/jb082i005p00743
25 https://doi.org/10.1029/jb090ib13p11289
26 https://doi.org/10.1086/109947
27 https://doi.org/10.1086/148762
28 https://doi.org/10.1086/522364
29 https://doi.org/10.1126/science.1140514
30 https://doi.org/10.1126/science.1211681
31 schema:datePublished 2012-01
32 schema:datePublishedReg 2012-01-01
33 schema:description The planet Mercury rotates three times about its spin axis for every two orbits about the Sun1,2, in a 3/2 spin–orbit resonance. This unique state has been explained by an initial rapid prograde rotation, which was then decelerated by tidal torques to the present resonance3,4,5,6. When friction at the core–mantle boundary is accounted for, capture into the 3/2 resonance occurs with a probability of only 26%, whereas the most likely outcome is capture into one of the higher-order resonances7. Here we use a numerical model of Mercury’s rotational evolution to investigate the consequences of an initial retrograde rotation of Mercury. We find that in this case, the planet would be captured into synchronous rotation, with one hemisphere always facing the Sun, with a probability of 68%. Strong lateral variations in the impact cratering rate would have existed, consistent with the observed distribution of large impact basins. Escape from this highly stable resonance can be initiated by the momentum imparted by large, basin-forming impact events8,9,10, and subsequent capture into the 3/2 resonance is likely. During synchronous rotation, substantial quantities of volatile deposits would have accumulated on the hemisphere facing away from the Sun, potentially explaining the existence of sublimation hollows on Mercury’s surface11.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf Nf4a8c64bbc6a475788a1772533fbf9ab
38 Nf553464b111f449787271fa2b4f14944
39 sg:journal.1040470
40 schema:name Mercury’s spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation
41 schema:pagination 18-21
42 schema:productId N29b2ade0be174e83945c6a5800cbd142
43 N7b430b0cadf3448897b6e9a124266992
44 Ndaae0bd2b00540f88d48443672ac4803
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035371206
46 https://doi.org/10.1038/ngeo1350
47 schema:sdDatePublished 2019-04-10T18:11
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N6602c26e9ce9482a86f917fb42092606
50 schema:url http://www.nature.com/articles/ngeo1350
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N29b2ade0be174e83945c6a5800cbd142 schema:name doi
55 schema:value 10.1038/ngeo1350
56 rdf:type schema:PropertyValue
57 N2c45b9ad3a5e4ca8bf3180593d2f8496 rdf:first sg:person.013735527334.68
58 rdf:rest Neca1d9f3cc284ef6adc27a71a8ee43fa
59 N6602c26e9ce9482a86f917fb42092606 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N7b430b0cadf3448897b6e9a124266992 schema:name readcube_id
62 schema:value a87e481bbb0a11f700a5e8a9229f8abe50c180d796e5ec765f163e0555333e40
63 rdf:type schema:PropertyValue
64 N7f867b7ac741436693dfbaf008feaedf rdf:first sg:person.014525312356.74
65 rdf:rest rdf:nil
66 N846cf9338fae4908b42daa8ad28063bb rdf:first sg:person.012336354417.19
67 rdf:rest N2c45b9ad3a5e4ca8bf3180593d2f8496
68 Nb45d0fe839c94a7b9e1992a9898c1a00 schema:name ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France
69 rdf:type schema:Organization
70 Nc1d24528ea994cd98e45a641b4d8bf2f rdf:first sg:person.07430751451.62
71 rdf:rest N846cf9338fae4908b42daa8ad28063bb
72 Ndaae0bd2b00540f88d48443672ac4803 schema:name dimensions_id
73 schema:value pub.1035371206
74 rdf:type schema:PropertyValue
75 Neca1d9f3cc284ef6adc27a71a8ee43fa rdf:first sg:person.01142167464.02
76 rdf:rest N7f867b7ac741436693dfbaf008feaedf
77 Nf4a8c64bbc6a475788a1772533fbf9ab schema:volumeNumber 5
78 rdf:type schema:PublicationVolume
79 Nf553464b111f449787271fa2b4f14944 schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
82 schema:name Earth Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
85 schema:name Geology
86 rdf:type schema:DefinedTerm
87 sg:journal.1040470 schema:issn 1752-0894
88 1752-0908
89 schema:name Nature Geoscience
90 rdf:type schema:Periodical
91 sg:person.01142167464.02 schema:affiliation Nb45d0fe839c94a7b9e1992a9898c1a00
92 schema:familyName Laskar
93 schema:givenName Jacques
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167464.02
95 rdf:type schema:Person
96 sg:person.012336354417.19 schema:affiliation https://www.grid.ac/institutes/grid.7311.4
97 schema:familyName Correia
98 schema:givenName Alexandre C. M.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012336354417.19
100 rdf:type schema:Person
101 sg:person.013735527334.68 schema:affiliation https://www.grid.ac/institutes/grid.463945.9
102 schema:familyName Le Feuvre
103 schema:givenName Mathieu
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013735527334.68
105 rdf:type schema:Person
106 sg:person.014525312356.74 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
107 schema:familyName Rambaux
108 schema:givenName Nicolas
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525312356.74
110 rdf:type schema:Person
111 sg:person.07430751451.62 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
112 schema:familyName Wieczorek
113 schema:givenName Mark A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430751451.62
115 rdf:type schema:Person
116 sg:pub.10.1038/2061240a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020223481
117 https://doi.org/10.1038/2061240a0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/208575a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017877812
120 https://doi.org/10.1038/208575a0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nature02609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027328987
123 https://doi.org/10.1038/nature02609
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1006/icar.1993.1059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047992827
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1006/icar.1997.5713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000718639
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1006/icar.2000.6544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036576305
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1006/icar.2001.6788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001931196
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0012-821x(75)90011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001688542
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.epsl.2009.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021948413
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.icarus.2008.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039902201
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.icarus.2008.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048575430
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.icarus.2008.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041969824
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.icarus.2008.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038730293
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.icarus.2008.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048605641
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.icarus.2011.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035740932
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.icarus.2011.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009251588
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0012-821x(03)00546-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019939907
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1029/2000je001384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019611737
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1029/2011gl047294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048650148
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1029/jb080i017p02417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051298886
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1029/jb082i005p00743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039507877
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1029/jb090ib13p11289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024136225
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1086/109947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448557
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1086/148762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058480053
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1086/522364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004260484
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1126/science.1140514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455883
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1126/science.1211681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465523
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
174 schema:name ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France
175 UPMC Univ Paris 06, F-75005, Paris, France
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.463945.9 schema:alternateName Laboratoire de Planétologie et Géodynamique de Nantes
178 schema:name Laboratoire de Planétologie et Géodynamique, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.7311.4 schema:alternateName University of Aveiro
181 schema:name ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France
182 Department of Physics, I3N, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
185 schema:name Institut de Physique du Globe de Paris, Univ Paris Diderot, 4 avenue de Neptune, 94100 Saint-Maur des Fossés, France
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...