Association of genes to genetically inherited diseases using data mining View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-07

AUTHORS

Carolina Perez-Iratxeta, Peer Bork, Miguel A. Andrade

ABSTRACT

Although approximately one-quarter of the roughly 4,000 genetically inherited diseases currently recorded in respective databases (LocusLink, OMIM) are already linked to a region of the human genome, about 450 have no known associated gene. Finding disease-related genes requires laborious examination of hundreds of possible candidate genes (sometimes, these are not even annotated; see, for example, refs 3,4). The public availability of the human genome draft sequence has fostered new strategies to map molecular functional features of gene products to complex phenotypic descriptions, such as those of genetically inherited diseases. Owing to recent progress in the systematic annotation of genes using controlled vocabularies, we have developed a scoring system for the possible functional relationships of human genes to 455 genetically inherited diseases that have been mapped to chromosomal regions without assignment of a particular gene. In a benchmark of the system with 100 known disease-associated genes, the disease-associated gene was among the 8 best-scoring genes with a 25% chance, and among the best 30 genes with a 50% chance, showing that there is a relationship between the score of a gene and its likelihood of being associated with a particular disease. The scoring also indicates that for some diseases, the chance of identifying the underlying gene is higher. More... »

PAGES

316-319

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng895

DOI

http://dx.doi.org/10.1038/ng895

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050529350

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12006977


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Diseases, Inborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MEDLINE", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "European Molecular Biology Laboratory, Meyerhofstr.1, Heidelberg 69012, Germany and Max Delbruck Center for Molecular Medicine, Department of Bioinformatics, PO Box 740238, D-13092, Berlin-Buch, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perez-Iratxeta", 
        "givenName": "Carolina", 
        "id": "sg:person.01321521377.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321521377.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "European Molecular Biology Laboratory, Meyerhofstr.1, Heidelberg 69012, Germany and Max Delbruck Center for Molecular Medicine, Department of Bioinformatics, PO Box 740238, D-13092, Berlin-Buch, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bork", 
        "givenName": "Peer", 
        "id": "sg:person.01240760565.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240760565.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "European Molecular Biology Laboratory, Meyerhofstr.1, Heidelberg 69012, Germany and Max Delbruck Center for Molecular Medicine, Department of Bioinformatics, PO Box 740238, D-13092, Berlin-Buch, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andrade", 
        "givenName": "Miguel A.", 
        "id": "sg:person.01040423343.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040423343.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004533830", 
          "https://doi.org/10.1038/ng572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004533830", 
          "https://doi.org/10.1038/ng572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973203", 
          "https://doi.org/10.1038/10290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973203", 
          "https://doi.org/10.1038/10290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011277574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-8702-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032391866", 
          "https://doi.org/10.1007/978-94-015-8702-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-8702-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032391866", 
          "https://doi.org/10.1007/978-94-015-8702-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(01)00467-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044106976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0317167100048617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045125922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-3510-2_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047517084", 
          "https://doi.org/10.1007/978-1-4615-3510-2_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-1004(200001)15:1<57::aid-humu12>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051794450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1060458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445003"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-07", 
    "datePublishedReg": "2002-07-01", 
    "description": "Although approximately one-quarter of the roughly 4,000 genetically inherited diseases currently recorded in respective databases (LocusLink, OMIM) are already linked to a region of the human genome, about 450 have no known associated gene. Finding disease-related genes requires laborious examination of hundreds of possible candidate genes (sometimes, these are not even annotated; see, for example, refs 3,4). The public availability of the human genome draft sequence has fostered new strategies to map molecular functional features of gene products to complex phenotypic descriptions, such as those of genetically inherited diseases. Owing to recent progress in the systematic annotation of genes using controlled vocabularies, we have developed a scoring system for the possible functional relationships of human genes to 455 genetically inherited diseases that have been mapped to chromosomal regions without assignment of a particular gene. In a benchmark of the system with 100 known disease-associated genes, the disease-associated gene was among the 8 best-scoring genes with a 25% chance, and among the best 30 genes with a 50% chance, showing that there is a relationship between the score of a gene and its likelihood of being associated with a particular disease. The scoring also indicates that for some diseases, the chance of identifying the underlying gene is higher.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng895", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Association of genes to genetically inherited diseases using data mining", 
    "pagination": "316-319", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f0b4bb967ff4655dc42db233f44d6d86ee4c70a3ea81292e82673b3b1b1b69a1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12006977"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng895"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050529350"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng895", 
      "https://app.dimensions.ai/details/publication/pub.1050529350"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53978_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/ng895"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng895'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng895'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng895'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng895'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      50 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng895 schema:about N1261530c4c254d7eacabb8ed5ca8c108
2 N2d5c1b8d9eed477984f890dc1242150d
3 N4154fdc719444f2e9ac43faeb81c7244
4 N659ce202fce146c1ad40bb71f2b2748d
5 N9fd0a32959e9483ba0c3c4d540797a1a
6 Na9fd5140f1ad46b19f5ee4ba8e1da884
7 Nb44cdff280e04a98a00a6390cc88e296
8 Nbeab121f6b834da98e793a6f1f3efcf3
9 Nd34e7bf5cf564b20adcdeff72f225834
10 Ndf692c7856fe4e58bff0b1a19e688a1d
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N0785e592aa344138ba410834c464a99d
14 schema:citation sg:pub.10.1007/978-1-4615-3510-2_14
15 sg:pub.10.1007/978-94-015-8702-0
16 sg:pub.10.1038/10290
17 sg:pub.10.1038/35057062
18 sg:pub.10.1038/ng572
19 https://doi.org/10.1002/(sici)1098-1004(200001)15:1<57::aid-humu12>3.0.co;2-g
20 https://doi.org/10.1016/s0092-8674(01)00467-6
21 https://doi.org/10.1017/s0317167100048617
22 https://doi.org/10.1093/nar/25.17.3389
23 https://doi.org/10.1093/nar/29.1.137
24 https://doi.org/10.1126/science.1060458
25 schema:datePublished 2002-07
26 schema:datePublishedReg 2002-07-01
27 schema:description Although approximately one-quarter of the roughly 4,000 genetically inherited diseases currently recorded in respective databases (LocusLink, OMIM) are already linked to a region of the human genome, about 450 have no known associated gene. Finding disease-related genes requires laborious examination of hundreds of possible candidate genes (sometimes, these are not even annotated; see, for example, refs 3,4). The public availability of the human genome draft sequence has fostered new strategies to map molecular functional features of gene products to complex phenotypic descriptions, such as those of genetically inherited diseases. Owing to recent progress in the systematic annotation of genes using controlled vocabularies, we have developed a scoring system for the possible functional relationships of human genes to 455 genetically inherited diseases that have been mapped to chromosomal regions without assignment of a particular gene. In a benchmark of the system with 100 known disease-associated genes, the disease-associated gene was among the 8 best-scoring genes with a 25% chance, and among the best 30 genes with a 50% chance, showing that there is a relationship between the score of a gene and its likelihood of being associated with a particular disease. The scoring also indicates that for some diseases, the chance of identifying the underlying gene is higher.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N52a6282d43bd40dfa1b71e8c88ed9213
32 Nf98830a445544b0b83dd9453af55eea1
33 sg:journal.1103138
34 schema:name Association of genes to genetically inherited diseases using data mining
35 schema:pagination 316-319
36 schema:productId N234b072971b94af28915804985c093a2
37 N2931858214ff4717b6609891421833b7
38 N2d17d5baf38b4f7388bebb0c85043ade
39 N63cc812365714c69b1391c991806aa37
40 Nc387f2363e3d441f9ff4131823f64b0d
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050529350
42 https://doi.org/10.1038/ng895
43 schema:sdDatePublished 2019-04-11T12:11
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nfee7bb57daa94d8fa2e74d5d5a196782
46 schema:url http://www.nature.com/articles/ng895
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0785e592aa344138ba410834c464a99d rdf:first sg:person.01321521377.45
51 rdf:rest N499e6311782847749de9d8c5ee9a3ff7
52 N1261530c4c254d7eacabb8ed5ca8c108 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Genetic Diseases, Inborn
54 rdf:type schema:DefinedTerm
55 N234b072971b94af28915804985c093a2 schema:name dimensions_id
56 schema:value pub.1050529350
57 rdf:type schema:PropertyValue
58 N2931858214ff4717b6609891421833b7 schema:name readcube_id
59 schema:value f0b4bb967ff4655dc42db233f44d6d86ee4c70a3ea81292e82673b3b1b1b69a1
60 rdf:type schema:PropertyValue
61 N2d17d5baf38b4f7388bebb0c85043ade schema:name doi
62 schema:value 10.1038/ng895
63 rdf:type schema:PropertyValue
64 N2d5c1b8d9eed477984f890dc1242150d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Chromosome Mapping
66 rdf:type schema:DefinedTerm
67 N2e3a05878f5348adb8441f9a049f390e schema:name European Molecular Biology Laboratory, Meyerhofstr.1, Heidelberg 69012, Germany and Max Delbruck Center for Molecular Medicine, Department of Bioinformatics, PO Box 740238, D-13092, Berlin-Buch, Germany.
68 rdf:type schema:Organization
69 N4154fdc719444f2e9ac43faeb81c7244 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Genetic Markers
71 rdf:type schema:DefinedTerm
72 N499e6311782847749de9d8c5ee9a3ff7 rdf:first sg:person.01240760565.42
73 rdf:rest Neb183a1be4ec42fa9e3059f34f80f288
74 N52a6282d43bd40dfa1b71e8c88ed9213 schema:volumeNumber 31
75 rdf:type schema:PublicationVolume
76 N63cc812365714c69b1391c991806aa37 schema:name nlm_unique_id
77 schema:value 9216904
78 rdf:type schema:PropertyValue
79 N659ce202fce146c1ad40bb71f2b2748d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Genome, Human
81 rdf:type schema:DefinedTerm
82 N6d381ebb8e434dc79c096128d3b5a602 schema:name European Molecular Biology Laboratory, Meyerhofstr.1, Heidelberg 69012, Germany and Max Delbruck Center for Molecular Medicine, Department of Bioinformatics, PO Box 740238, D-13092, Berlin-Buch, Germany.
83 rdf:type schema:Organization
84 N9fd0a32959e9483ba0c3c4d540797a1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Databases, Genetic
86 rdf:type schema:DefinedTerm
87 Na9fd5140f1ad46b19f5ee4ba8e1da884 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Humans
89 rdf:type schema:DefinedTerm
90 Nb0feaf3afdb24d3b9193f997cc65d13a schema:name European Molecular Biology Laboratory, Meyerhofstr.1, Heidelberg 69012, Germany and Max Delbruck Center for Molecular Medicine, Department of Bioinformatics, PO Box 740238, D-13092, Berlin-Buch, Germany.
91 rdf:type schema:Organization
92 Nb44cdff280e04a98a00a6390cc88e296 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Phenotype
94 rdf:type schema:DefinedTerm
95 Nbeab121f6b834da98e793a6f1f3efcf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Mathematics
97 rdf:type schema:DefinedTerm
98 Nc387f2363e3d441f9ff4131823f64b0d schema:name pubmed_id
99 schema:value 12006977
100 rdf:type schema:PropertyValue
101 Nd34e7bf5cf564b20adcdeff72f225834 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Genetic Predisposition to Disease
103 rdf:type schema:DefinedTerm
104 Ndf692c7856fe4e58bff0b1a19e688a1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name MEDLINE
106 rdf:type schema:DefinedTerm
107 Neb183a1be4ec42fa9e3059f34f80f288 rdf:first sg:person.01040423343.09
108 rdf:rest rdf:nil
109 Nf98830a445544b0b83dd9453af55eea1 schema:issueNumber 3
110 rdf:type schema:PublicationIssue
111 Nfee7bb57daa94d8fa2e74d5d5a196782 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
114 schema:name Biological Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
117 schema:name Genetics
118 rdf:type schema:DefinedTerm
119 sg:journal.1103138 schema:issn 1061-4036
120 1546-1718
121 schema:name Nature Genetics
122 rdf:type schema:Periodical
123 sg:person.01040423343.09 schema:affiliation N6d381ebb8e434dc79c096128d3b5a602
124 schema:familyName Andrade
125 schema:givenName Miguel A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040423343.09
127 rdf:type schema:Person
128 sg:person.01240760565.42 schema:affiliation N2e3a05878f5348adb8441f9a049f390e
129 schema:familyName Bork
130 schema:givenName Peer
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240760565.42
132 rdf:type schema:Person
133 sg:person.01321521377.45 schema:affiliation Nb0feaf3afdb24d3b9193f997cc65d13a
134 schema:familyName Perez-Iratxeta
135 schema:givenName Carolina
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321521377.45
137 rdf:type schema:Person
138 sg:pub.10.1007/978-1-4615-3510-2_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047517084
139 https://doi.org/10.1007/978-1-4615-3510-2_14
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-94-015-8702-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032391866
142 https://doi.org/10.1007/978-94-015-8702-0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/10290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973203
145 https://doi.org/10.1038/10290
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/35057062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854081
148 https://doi.org/10.1038/35057062
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/ng572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004533830
151 https://doi.org/10.1038/ng572
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/(sici)1098-1004(200001)15:1<57::aid-humu12>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1051794450
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0092-8674(01)00467-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044106976
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1017/s0317167100048617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045125922
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/nar/29.1.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011277574
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1126/science.1060458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445003
164 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...