Network motifs in the transcriptional regulation network of Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-04-22

AUTHORS

Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan, Uri Alon

ABSTRACT

Little is known about the design principles1,2,3,4,5,6,7,8,9,10 of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis2,11,12, however, are generating unprecedented amounts of information about gene regulation networks. To understand these complex wiring diagrams1,2,3,4,5,6,7,8,9,10,13, we sought to break down such networks into basic building blocks2. We generalize the notion of motifs, widely used for sequence analysis, to the level of networks. We define 'network motifs' as patterns of interconnections that recur in many different parts of a network at frequencies much higher than those found in randomized networks. We applied new algorithms for systematically detecting network motifs to one of the best-characterized regulation networks, that of direct transcriptional interactions in Escherichia coli3,6. We find that much of the network is composed of repeated appearances of three highly significant motifs. Each network motif has a specific function in determining gene expression, such as generating temporal expression programs and governing the responses to fluctuating external signals. The motif structure also allows an easily interpretable view of the entire known transcriptional network of the organism. This approach may help define the basic computational elements of other biological networks. More... »

PAGES

64-68

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng881

DOI

http://dx.doi.org/10.1038/ng881

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010954918

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11967538


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regulon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular Cell Biology, Weizmann Institute of Science, 76100, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Molecular Cell Biology, Weizmann Institute of Science, 76100, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen-Orr", 
        "givenName": "Shai S.", 
        "id": "sg:person.01213007720.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213007720.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milo", 
        "givenName": "Ron", 
        "id": "sg:person.0774352340.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774352340.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Cell Biology, Weizmann Institute of Science, 76100, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Molecular Cell Biology, Weizmann Institute of Science, 76100, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mangan", 
        "givenName": "Shmoolik", 
        "id": "sg:person.016437275623.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016437275623.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Molecular Cell Biology, Weizmann Institute of Science, 76100, Rehovot, Israel", 
            "Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alon", 
        "givenName": "Uri", 
        "id": "sg:person.01310216122.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310216122.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35036627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051510804", 
          "https://doi.org/10.1038/35036627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019498862", 
          "https://doi.org/10.1038/35011540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/376307a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044112594", 
          "https://doi.org/10.1038/376307a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-04-22", 
    "datePublishedReg": "2002-04-22", 
    "description": "Little is known about the design principles1,2,3,4,5,6,7,8,9,10 of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis2,11,12, however, are generating unprecedented amounts of information about gene regulation networks. To understand these complex wiring diagrams1,2,3,4,5,6,7,8,9,10,13, we sought to break down such networks into basic building blocks2. We generalize the notion of motifs, widely used for sequence analysis, to the level of networks. We define 'network motifs' as patterns of interconnections that recur in many different parts of a network at frequencies much higher than those found in randomized networks. We applied new algorithms for systematically detecting network motifs to one of the best-characterized regulation networks, that of direct transcriptional interactions in Escherichia coli3,6. We find that much of the network is composed of repeated appearances of three highly significant motifs. Each network motif has a specific function in determining gene expression, such as generating temporal expression programs and governing the responses to fluctuating external signals. The motif structure also allows an easily interpretable view of the entire known transcriptional network of the organism. This approach may help define the basic computational elements of other biological networks.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ng881", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "transcriptional regulation network", 
      "regulation network", 
      "network motifs", 
      "gene expression", 
      "direct transcriptional interactions", 
      "gene regulation networks", 
      "expression programs", 
      "transcriptional networks", 
      "transcriptional interactions", 
      "sequence analysis", 
      "motif structure", 
      "external signals", 
      "Escherichia coli", 
      "specific functions", 
      "biological networks", 
      "motif", 
      "interpretable view", 
      "significant motifs", 
      "expression", 
      "recent advances", 
      "notion of motif", 
      "randomized networks", 
      "unprecedented amount", 
      "pattern of interconnections", 
      "organisms", 
      "coli", 
      "Escherichia", 
      "complex wiring", 
      "cells", 
      "different parts", 
      "level of networks", 
      "interaction", 
      "function", 
      "patterns", 
      "response", 
      "advances", 
      "basic computational elements", 
      "signals", 
      "levels", 
      "structure", 
      "network", 
      "analysis", 
      "elements", 
      "collection", 
      "amount", 
      "part", 
      "appearance", 
      "wiring", 
      "information", 
      "such networks", 
      "approach", 
      "frequency", 
      "program", 
      "view", 
      "notion", 
      "interconnection", 
      "computational elements", 
      "new algorithm", 
      "design", 
      "data collection", 
      "algorithm", 
      "basic building blocks2", 
      "building blocks2", 
      "blocks2", 
      "temporal expression programs"
    ], 
    "name": "Network motifs in the transcriptional regulation network of Escherichia coli", 
    "pagination": "64-68", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010954918"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng881"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11967538"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng881", 
      "https://app.dimensions.ai/details/publication/pub.1010954918"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_358.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ng881"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng881'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng881'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng881'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng881'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      22 PREDICATES      105 URIs      93 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng881 schema:about N04e42aef697b4a85af3042daf542a3d5
2 N15721afd8e9c4fee9ef4bf52c1d9ea1e
3 N49ee38772e004fd4803e0cbd019635ac
4 N5c31106598f1423180ea252ef4200cff
5 N7d38849762544e50abca7d17a4c7630d
6 Na043aeda70084fb1bc68bf13e894f862
7 Nb608ab966c4247fc94508326769b82bd
8 Nb9f1ca790edf43a1b48ebe9a61b312ef
9 Nd5d199b6b18e422a9719aeca6bdc0d1a
10 Nd87f65917d8a4174a40c6c43f548c582
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N44d0f6d4141d4046912cdedb39e3646c
14 schema:citation sg:pub.10.1038/35011540
15 sg:pub.10.1038/35036627
16 sg:pub.10.1038/35065725
17 sg:pub.10.1038/376307a0
18 schema:datePublished 2002-04-22
19 schema:datePublishedReg 2002-04-22
20 schema:description Little is known about the design principles1,2,3,4,5,6,7,8,9,10 of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis2,11,12, however, are generating unprecedented amounts of information about gene regulation networks. To understand these complex wiring diagrams1,2,3,4,5,6,7,8,9,10,13, we sought to break down such networks into basic building blocks2. We generalize the notion of motifs, widely used for sequence analysis, to the level of networks. We define 'network motifs' as patterns of interconnections that recur in many different parts of a network at frequencies much higher than those found in randomized networks. We applied new algorithms for systematically detecting network motifs to one of the best-characterized regulation networks, that of direct transcriptional interactions in Escherichia coli3,6. We find that much of the network is composed of repeated appearances of three highly significant motifs. Each network motif has a specific function in determining gene expression, such as generating temporal expression programs and governing the responses to fluctuating external signals. The motif structure also allows an easily interpretable view of the entire known transcriptional network of the organism. This approach may help define the basic computational elements of other biological networks.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N7d670f73529d43fd898cfb1039a5b48d
25 Nce621cc2b2784a2da3e84a5fdd991afb
26 sg:journal.1103138
27 schema:keywords Escherichia
28 Escherichia coli
29 advances
30 algorithm
31 amount
32 analysis
33 appearance
34 approach
35 basic building blocks2
36 basic computational elements
37 biological networks
38 blocks2
39 building blocks2
40 cells
41 coli
42 collection
43 complex wiring
44 computational elements
45 data collection
46 design
47 different parts
48 direct transcriptional interactions
49 elements
50 expression
51 expression programs
52 external signals
53 frequency
54 function
55 gene expression
56 gene regulation networks
57 information
58 interaction
59 interconnection
60 interpretable view
61 level of networks
62 levels
63 motif
64 motif structure
65 network
66 network motifs
67 new algorithm
68 notion
69 notion of motif
70 organisms
71 part
72 pattern of interconnections
73 patterns
74 program
75 randomized networks
76 recent advances
77 regulation network
78 response
79 sequence analysis
80 signals
81 significant motifs
82 specific functions
83 structure
84 such networks
85 temporal expression programs
86 transcriptional interactions
87 transcriptional networks
88 transcriptional regulation network
89 unprecedented amount
90 view
91 wiring
92 schema:name Network motifs in the transcriptional regulation network of Escherichia coli
93 schema:pagination 64-68
94 schema:productId N496f2265bc2a48ac969eb543c20328a9
95 N9c0dfdb5638e49f9965ef27b966a51ea
96 Ne0ff7a25c053499d9cc1d28344e3c30e
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954918
98 https://doi.org/10.1038/ng881
99 schema:sdDatePublished 2022-01-01T18:12
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher Naec609d5a2334943af35c286cc546eda
102 schema:url https://doi.org/10.1038/ng881
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N04e42aef697b4a85af3042daf542a3d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Transcription Factors
108 rdf:type schema:DefinedTerm
109 N15721afd8e9c4fee9ef4bf52c1d9ea1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Regulon
111 rdf:type schema:DefinedTerm
112 N1efc024ac2124af7b32b2731d1f06950 rdf:first sg:person.016437275623.42
113 rdf:rest N869c878c988e430282093a897dedbb1a
114 N44d0f6d4141d4046912cdedb39e3646c rdf:first sg:person.01213007720.49
115 rdf:rest Nd8f74ee8d87b4797807e067d24b6e2f6
116 N496f2265bc2a48ac969eb543c20328a9 schema:name dimensions_id
117 schema:value pub.1010954918
118 rdf:type schema:PropertyValue
119 N49ee38772e004fd4803e0cbd019635ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Models, Genetic
121 rdf:type schema:DefinedTerm
122 N5c31106598f1423180ea252ef4200cff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Transcription, Genetic
124 rdf:type schema:DefinedTerm
125 N7d38849762544e50abca7d17a4c7630d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Escherichia coli
127 rdf:type schema:DefinedTerm
128 N7d670f73529d43fd898cfb1039a5b48d schema:volumeNumber 31
129 rdf:type schema:PublicationVolume
130 N869c878c988e430282093a897dedbb1a rdf:first sg:person.01310216122.13
131 rdf:rest rdf:nil
132 N9c0dfdb5638e49f9965ef27b966a51ea schema:name pubmed_id
133 schema:value 11967538
134 rdf:type schema:PropertyValue
135 Na043aeda70084fb1bc68bf13e894f862 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Genes, Bacterial
137 rdf:type schema:DefinedTerm
138 Naec609d5a2334943af35c286cc546eda schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Nb608ab966c4247fc94508326769b82bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Databases, Genetic
142 rdf:type schema:DefinedTerm
143 Nb9f1ca790edf43a1b48ebe9a61b312ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Gene Expression Regulation, Bacterial
145 rdf:type schema:DefinedTerm
146 Nce621cc2b2784a2da3e84a5fdd991afb schema:issueNumber 1
147 rdf:type schema:PublicationIssue
148 Nd5d199b6b18e422a9719aeca6bdc0d1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Algorithms
150 rdf:type schema:DefinedTerm
151 Nd87f65917d8a4174a40c6c43f548c582 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Signal Transduction
153 rdf:type schema:DefinedTerm
154 Nd8f74ee8d87b4797807e067d24b6e2f6 rdf:first sg:person.0774352340.01
155 rdf:rest N1efc024ac2124af7b32b2731d1f06950
156 Ne0ff7a25c053499d9cc1d28344e3c30e schema:name doi
157 schema:value 10.1038/ng881
158 rdf:type schema:PropertyValue
159 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
160 schema:name Biological Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
163 schema:name Genetics
164 rdf:type schema:DefinedTerm
165 sg:journal.1103138 schema:issn 1061-4036
166 1546-1718
167 schema:name Nature Genetics
168 schema:publisher Springer Nature
169 rdf:type schema:Periodical
170 sg:person.01213007720.49 schema:affiliation grid-institutes:grid.13992.30
171 schema:familyName Shen-Orr
172 schema:givenName Shai S.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213007720.49
174 rdf:type schema:Person
175 sg:person.01310216122.13 schema:affiliation grid-institutes:grid.13992.30
176 schema:familyName Alon
177 schema:givenName Uri
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310216122.13
179 rdf:type schema:Person
180 sg:person.016437275623.42 schema:affiliation grid-institutes:grid.13992.30
181 schema:familyName Mangan
182 schema:givenName Shmoolik
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016437275623.42
184 rdf:type schema:Person
185 sg:person.0774352340.01 schema:affiliation grid-institutes:grid.13992.30
186 schema:familyName Milo
187 schema:givenName Ron
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774352340.01
189 rdf:type schema:Person
190 sg:pub.10.1038/35011540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019498862
191 https://doi.org/10.1038/35011540
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/35036627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051510804
194 https://doi.org/10.1038/35036627
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/35065725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249327
197 https://doi.org/10.1038/35065725
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/376307a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044112594
200 https://doi.org/10.1038/376307a0
201 rdf:type schema:CreativeWork
202 grid-institutes:grid.13992.30 schema:alternateName Department of Molecular Cell Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
203 Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel
204 schema:name Department of Molecular Cell Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
205 Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...