Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-12

AUTHORS

Hui Ge, Zhihua Liu, George M. Church, Marc Vidal

ABSTRACT

Genomic and proteomic approaches can provide hypotheses concerning function for the large number of genes predicted from genome sequences. Because of the artificial nature of the assays, however, the information from these high-throughput approaches should be considered with caution. Although it is possible that more meaningful hypotheses could be formulated by integrating the data from various functional genomic and proteomic projects, it has yet to be seen to what extent the data can be correlated and how such integration can be achieved. We developed a 'transcriptome-interactome correlation mapping' strategy to compare the interactions between proteins encoded by genes that belong to common expression-profiling clusters with those between proteins encoded by genes that belong to different clusters. Using this strategy with currently available data sets for Saccharomyces cerevisiae, we provide the first global evidence that genes with similar expression profiles are more likely to encode interacting proteins. We show how this correlation between transcriptome and interactome data can be used to improve the quality of hypotheses based on the information from both approaches. The strategy described here may help to integrate other functional genomic and proteomic data, both in yeast and in higher organisms. More... »

PAGES

482-486

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng776

DOI

http://dx.doi.org/10.1038/ng776

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024019002

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11694880


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungal Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "Hui", 
        "id": "sg:person.0653440730.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653440730.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Neurology, Brigham and Women's Hospital and Center for Neurologic Diseases, Harvard Medical School, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhihua", 
        "id": "sg:person.0713503445.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713503445.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "The Lipper Center for Computational Genetics and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Church", 
        "givenName": "George M.", 
        "id": "sg:person.01115626315.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vidal", 
        "givenName": "Marc", 
        "id": "sg:person.0657302030.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657302030.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0092-8674(01)00308-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002636976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35066084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009559478", 
          "https://doi.org/10.1038/35066084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35066084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009559478", 
          "https://doi.org/10.1038/35066084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.3.1143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009581960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35048107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010548523", 
          "https://doi.org/10.1038/35048107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35048107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010548523", 
          "https://doi.org/10.1038/35048107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.1.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017605455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.061034498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019323411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1097-2765(00)80114-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027451892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028135585", 
          "https://doi.org/10.1038/35015701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028135585", 
          "https://doi.org/10.1038/35015701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.20.21.8157-8167.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028900760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030361158", 
          "https://doi.org/10.1038/35015709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030361158", 
          "https://doi.org/10.1038/35015709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031366016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035773549", 
          "https://doi.org/10.1038/35001009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035773549", 
          "https://doi.org/10.1038/35001009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(01)00221-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041407912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/82539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047742057", 
          "https://doi.org/10.1038/82539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/82539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047742057", 
          "https://doi.org/10.1038/82539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083337267", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "Genomic and proteomic approaches can provide hypotheses concerning function for the large number of genes predicted from genome sequences. Because of the artificial nature of the assays, however, the information from these high-throughput approaches should be considered with caution. Although it is possible that more meaningful hypotheses could be formulated by integrating the data from various functional genomic and proteomic projects, it has yet to be seen to what extent the data can be correlated and how such integration can be achieved. We developed a 'transcriptome-interactome correlation mapping' strategy to compare the interactions between proteins encoded by genes that belong to common expression-profiling clusters with those between proteins encoded by genes that belong to different clusters. Using this strategy with currently available data sets for Saccharomyces cerevisiae, we provide the first global evidence that genes with similar expression profiles are more likely to encode interacting proteins. We show how this correlation between transcriptome and interactome data can be used to improve the quality of hypotheses based on the information from both approaches. The strategy described here may help to integrate other functional genomic and proteomic data, both in yeast and in higher organisms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng776", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2529015", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae", 
    "pagination": "482-486", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "726e34f942a214e366f5d0cb245503636b32699f8cb4b7f4b34005c7a9566ff6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11694880"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng776"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024019002"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng776", 
      "https://app.dimensions.ai/details/publication/pub.1024019002"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53981_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/ng776"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng776'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng776'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng776'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng776'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      51 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng776 schema:about N0e1255e0cb604f74a94a9e9e78a7c372
2 N46bea6086d464eca98fb02788bc69fa7
3 Nd32a5419b0f84b5fb3210ac18f1b07fd
4 Ne0270da388354807a752090b92376739
5 Ne4f7f5bf408042d399e2264d32c217ac
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author N8a725247488e464bbe0e6636ec7082ad
9 schema:citation sg:pub.10.1038/10343
10 sg:pub.10.1038/35001009
11 sg:pub.10.1038/35015701
12 sg:pub.10.1038/35015709
13 sg:pub.10.1038/35048107
14 sg:pub.10.1038/35066084
15 sg:pub.10.1038/82539
16 https://app.dimensions.ai/details/publication/pub.1083337267
17 https://doi.org/10.1016/s0092-8674(01)00221-5
18 https://doi.org/10.1016/s0092-8674(01)00308-7
19 https://doi.org/10.1016/s1097-2765(00)80114-8
20 https://doi.org/10.1073/pnas.061034498
21 https://doi.org/10.1073/pnas.95.25.14863
22 https://doi.org/10.1073/pnas.97.3.1143
23 https://doi.org/10.1093/nar/27.1.69
24 https://doi.org/10.1093/nar/28.1.37
25 https://doi.org/10.1128/mcb.20.21.8157-8167.2000
26 schema:datePublished 2001-12
27 schema:datePublishedReg 2001-12-01
28 schema:description Genomic and proteomic approaches can provide hypotheses concerning function for the large number of genes predicted from genome sequences. Because of the artificial nature of the assays, however, the information from these high-throughput approaches should be considered with caution. Although it is possible that more meaningful hypotheses could be formulated by integrating the data from various functional genomic and proteomic projects, it has yet to be seen to what extent the data can be correlated and how such integration can be achieved. We developed a 'transcriptome-interactome correlation mapping' strategy to compare the interactions between proteins encoded by genes that belong to common expression-profiling clusters with those between proteins encoded by genes that belong to different clusters. Using this strategy with currently available data sets for Saccharomyces cerevisiae, we provide the first global evidence that genes with similar expression profiles are more likely to encode interacting proteins. We show how this correlation between transcriptome and interactome data can be used to improve the quality of hypotheses based on the information from both approaches. The strategy described here may help to integrate other functional genomic and proteomic data, both in yeast and in higher organisms.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Nd2043ae5750f47d6810b4ae549316751
33 Nff60731d41434ec3bc821b627f9c79af
34 sg:journal.1103138
35 schema:name Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae
36 schema:pagination 482-486
37 schema:productId N052f8242c324451ca5757f0420cd40fe
38 N3921914215604697875792bb65a7ca09
39 N508c30a549044747a28ab09046c4f62d
40 Ndea3ebb6ea3a467bb3081c74f28312a9
41 Neaee8bcedbc240089ced8870c4c55fd7
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024019002
43 https://doi.org/10.1038/ng776
44 schema:sdDatePublished 2019-04-11T12:11
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N9d60185ddd49476faaf91ec890b62a71
47 schema:url http://www.nature.com/articles/ng776
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N052f8242c324451ca5757f0420cd40fe schema:name nlm_unique_id
52 schema:value 9216904
53 rdf:type schema:PropertyValue
54 N0e1255e0cb604f74a94a9e9e78a7c372 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Fungal Proteins
56 rdf:type schema:DefinedTerm
57 N192718eb57c1425bbe3dcea4798164f3 rdf:first sg:person.01115626315.03
58 rdf:rest N8cc7dffd5c4d4c4d88692de8943edb61
59 N3921914215604697875792bb65a7ca09 schema:name doi
60 schema:value 10.1038/ng776
61 rdf:type schema:PropertyValue
62 N46bea6086d464eca98fb02788bc69fa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Transcription, Genetic
64 rdf:type schema:DefinedTerm
65 N508c30a549044747a28ab09046c4f62d schema:name dimensions_id
66 schema:value pub.1024019002
67 rdf:type schema:PropertyValue
68 N8a725247488e464bbe0e6636ec7082ad rdf:first sg:person.0653440730.78
69 rdf:rest Nc31edf14e20241ae913643a655721969
70 N8cc7dffd5c4d4c4d88692de8943edb61 rdf:first sg:person.0657302030.33
71 rdf:rest rdf:nil
72 N9d60185ddd49476faaf91ec890b62a71 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nc31edf14e20241ae913643a655721969 rdf:first sg:person.0713503445.81
75 rdf:rest N192718eb57c1425bbe3dcea4798164f3
76 Nd2043ae5750f47d6810b4ae549316751 schema:volumeNumber 29
77 rdf:type schema:PublicationVolume
78 Nd32a5419b0f84b5fb3210ac18f1b07fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Proteome
80 rdf:type schema:DefinedTerm
81 Ndea3ebb6ea3a467bb3081c74f28312a9 schema:name pubmed_id
82 schema:value 11694880
83 rdf:type schema:PropertyValue
84 Ne0270da388354807a752090b92376739 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Genome, Fungal
86 rdf:type schema:DefinedTerm
87 Ne4f7f5bf408042d399e2264d32c217ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Saccharomyces cerevisiae
89 rdf:type schema:DefinedTerm
90 Neaee8bcedbc240089ced8870c4c55fd7 schema:name readcube_id
91 schema:value 726e34f942a214e366f5d0cb245503636b32699f8cb4b7f4b34005c7a9566ff6
92 rdf:type schema:PropertyValue
93 Nff60731d41434ec3bc821b627f9c79af schema:issueNumber 4
94 rdf:type schema:PublicationIssue
95 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biological Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
99 schema:name Genetics
100 rdf:type schema:DefinedTerm
101 sg:grant.2529015 http://pending.schema.org/fundedItem sg:pub.10.1038/ng776
102 rdf:type schema:MonetaryGrant
103 sg:journal.1103138 schema:issn 1061-4036
104 1546-1718
105 schema:name Nature Genetics
106 rdf:type schema:Periodical
107 sg:person.01115626315.03 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
108 schema:familyName Church
109 schema:givenName George M.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03
111 rdf:type schema:Person
112 sg:person.0653440730.78 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
113 schema:familyName Ge
114 schema:givenName Hui
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653440730.78
116 rdf:type schema:Person
117 sg:person.0657302030.33 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
118 schema:familyName Vidal
119 schema:givenName Marc
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657302030.33
121 rdf:type schema:Person
122 sg:person.0713503445.81 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
123 schema:familyName Liu
124 schema:givenName Zhihua
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713503445.81
126 rdf:type schema:Person
127 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
128 https://doi.org/10.1038/10343
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/35001009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773549
131 https://doi.org/10.1038/35001009
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/35015701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028135585
134 https://doi.org/10.1038/35015701
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/35015709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030361158
137 https://doi.org/10.1038/35015709
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/35048107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010548523
140 https://doi.org/10.1038/35048107
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/35066084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009559478
143 https://doi.org/10.1038/35066084
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/82539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047742057
146 https://doi.org/10.1038/82539
147 rdf:type schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1083337267 schema:CreativeWork
149 https://doi.org/10.1016/s0092-8674(01)00221-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041407912
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0092-8674(01)00308-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002636976
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s1097-2765(00)80114-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027451892
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.061034498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019323411
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.97.3.1143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009581960
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/nar/27.1.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017605455
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/nar/28.1.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031366016
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1128/mcb.20.21.8157-8167.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028900760
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
168 schema:name Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
169 Department of Neurology, Brigham and Women's Hospital and Center for Neurologic Diseases, Harvard Medical School, Boston, Massachusetts, USA.
170 The Lipper Center for Computational Genetics and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...