Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-11-05

AUTHORS

Hui Ge, Zhihua Liu, George M. Church, Marc Vidal

ABSTRACT

Genomic and proteomic approaches can provide hypotheses concerning function for the large number of genes predicted from genome sequences1,2,3,4,5. Because of the artificial nature of the assays, however, the information from these high-throughput approaches should be considered with caution. Although it is possible that more meaningful hypotheses could be formulated by integrating the data from various functional genomic and proteomic projects6, it has yet to be seen to what extent the data can be correlated and how such integration can be achieved. We developed a 'transcriptome–interactome correlation mapping' strategy to compare the interactions between proteins encoded by genes that belong to common expression-profiling clusters with those between proteins encoded by genes that belong to different clusters. Using this strategy with currently available data sets for Saccharomyces cerevisiae, we provide the first global evidence that genes with similar expression profiles are more likely to encode interacting proteins. We show how this correlation between transcriptome and interactome data can be used to improve the quality of hypotheses based on the information from both approaches. The strategy described here may help to integrate other functional genomic and proteomic data, both in yeast and in higher organisms. More... »

PAGES

482-486

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng776

DOI

http://dx.doi.org/10.1038/ng776

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024019002

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11694880


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungal Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 02115, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "Hui", 
        "id": "sg:person.0653440730.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653440730.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Brigham and Women's Hospital and Center for Neurologic Diseases, Harvard Medical School, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Neurology, Brigham and Women's Hospital and Center for Neurologic Diseases, Harvard Medical School, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhihua", 
        "id": "sg:person.0713503445.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713503445.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Lipper Center for Computational Genetics and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "The Lipper Center for Computational Genetics and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Church", 
        "givenName": "George M.", 
        "id": "sg:person.01115626315.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 02115, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vidal", 
        "givenName": "Marc", 
        "id": "sg:person.0657302030.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657302030.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35015709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030361158", 
          "https://doi.org/10.1038/35015709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35048107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010548523", 
          "https://doi.org/10.1038/35048107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035773549", 
          "https://doi.org/10.1038/35001009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35066084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009559478", 
          "https://doi.org/10.1038/35066084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/82539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047742057", 
          "https://doi.org/10.1038/82539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028135585", 
          "https://doi.org/10.1038/35015701"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-11-05", 
    "datePublishedReg": "2001-11-05", 
    "description": "Genomic and proteomic approaches can provide hypotheses concerning function for the large number of genes predicted from genome sequences1,2,3,4,5. Because of the artificial nature of the assays, however, the information from these high-throughput approaches should be considered with caution. Although it is possible that more meaningful hypotheses could be formulated by integrating the data from various functional genomic and proteomic projects6, it has yet to be seen to what extent the data can be correlated and how such integration can be achieved. We developed a 'transcriptome\u2013interactome correlation mapping' strategy to compare the interactions between proteins encoded by genes that belong to common expression-profiling clusters with those between proteins encoded by genes that belong to different clusters. Using this strategy with currently available data sets for Saccharomyces cerevisiae, we provide the first global evidence that genes with similar expression profiles are more likely to encode interacting proteins. We show how this correlation between transcriptome and interactome data can be used to improve the quality of hypotheses based on the information from both approaches. The strategy described here may help to integrate other functional genomic and proteomic data, both in yeast and in higher organisms.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ng776", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2529015", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "similar expression profiles", 
      "high-throughput approach", 
      "higher organisms", 
      "proteomic approach", 
      "interactome data", 
      "proteomic data", 
      "expression profiles", 
      "genes", 
      "transcriptome", 
      "protein", 
      "Saccharomyces", 
      "mapping data", 
      "meaningful hypotheses", 
      "mapping strategy", 
      "genome", 
      "yeast", 
      "organisms", 
      "hypothesis", 
      "artificial nature", 
      "different clusters", 
      "large number", 
      "assays", 
      "clusters", 
      "available data sets", 
      "interaction", 
      "strategies", 
      "function", 
      "data sets", 
      "data", 
      "evidence", 
      "quality of hypotheses", 
      "profile", 
      "such integration", 
      "number", 
      "information", 
      "extent", 
      "correlation", 
      "approach", 
      "global evidence", 
      "nature", 
      "set", 
      "caution", 
      "integration", 
      "quality", 
      "proteomic projects6", 
      "projects6", 
      "transcriptome\u2013interactome correlation mapping' strategy", 
      "correlation mapping' strategy", 
      "common expression-profiling clusters", 
      "expression-profiling clusters", 
      "first global evidence", 
      "interactome mapping data"
    ], 
    "name": "Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae", 
    "pagination": "482-486", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024019002"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng776"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11694880"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng776", 
      "https://app.dimensions.ai/details/publication/pub.1024019002"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_335.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ng776"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng776'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng776'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng776'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng776'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      22 PREDICATES      90 URIs      75 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng776 schema:about N1cd415bc0cee464d850b7ef207219534
2 N29c5af4928294169a8fee4b43b604045
3 N71b42bb5e305469e803b34cf055b3a88
4 Na04cfacd4bd84fc385574ccb091328f9
5 Nec59b9c0b3074158a3c7fe7d24f141c4
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author N43c4f7c4787a4e02aedf677322f3dfd5
9 schema:citation sg:pub.10.1038/10343
10 sg:pub.10.1038/35001009
11 sg:pub.10.1038/35015701
12 sg:pub.10.1038/35015709
13 sg:pub.10.1038/35048107
14 sg:pub.10.1038/35066084
15 sg:pub.10.1038/82539
16 schema:datePublished 2001-11-05
17 schema:datePublishedReg 2001-11-05
18 schema:description Genomic and proteomic approaches can provide hypotheses concerning function for the large number of genes predicted from genome sequences1,2,3,4,5. Because of the artificial nature of the assays, however, the information from these high-throughput approaches should be considered with caution. Although it is possible that more meaningful hypotheses could be formulated by integrating the data from various functional genomic and proteomic projects6, it has yet to be seen to what extent the data can be correlated and how such integration can be achieved. We developed a 'transcriptome–interactome correlation mapping' strategy to compare the interactions between proteins encoded by genes that belong to common expression-profiling clusters with those between proteins encoded by genes that belong to different clusters. Using this strategy with currently available data sets for Saccharomyces cerevisiae, we provide the first global evidence that genes with similar expression profiles are more likely to encode interacting proteins. We show how this correlation between transcriptome and interactome data can be used to improve the quality of hypotheses based on the information from both approaches. The strategy described here may help to integrate other functional genomic and proteomic data, both in yeast and in higher organisms.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N652b8e9e445b4d88ab51d29310fc2d07
23 N7e3398e9b42047158ddb1c5d0138d8bd
24 sg:journal.1103138
25 schema:keywords Saccharomyces
26 approach
27 artificial nature
28 assays
29 available data sets
30 caution
31 clusters
32 common expression-profiling clusters
33 correlation
34 correlation mapping' strategy
35 data
36 data sets
37 different clusters
38 evidence
39 expression profiles
40 expression-profiling clusters
41 extent
42 first global evidence
43 function
44 genes
45 genome
46 global evidence
47 high-throughput approach
48 higher organisms
49 hypothesis
50 information
51 integration
52 interaction
53 interactome data
54 interactome mapping data
55 large number
56 mapping data
57 mapping strategy
58 meaningful hypotheses
59 nature
60 number
61 organisms
62 profile
63 projects6
64 protein
65 proteomic approach
66 proteomic data
67 proteomic projects6
68 quality
69 quality of hypotheses
70 set
71 similar expression profiles
72 strategies
73 such integration
74 transcriptome
75 transcriptome–interactome correlation mapping' strategy
76 yeast
77 schema:name Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae
78 schema:pagination 482-486
79 schema:productId N1deb5c0e1e1d4077975e2a199b34db9c
80 N7b85de7cc1d144b2b0620441c7eada58
81 Nab0950d4e05f4f41b25361eb8c38f818
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024019002
83 https://doi.org/10.1038/ng776
84 schema:sdDatePublished 2022-01-01T18:10
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N029930332ba349eb8336905a39854eff
87 schema:url https://doi.org/10.1038/ng776
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N029930332ba349eb8336905a39854eff schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N1cd415bc0cee464d850b7ef207219534 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Transcription, Genetic
95 rdf:type schema:DefinedTerm
96 N1deb5c0e1e1d4077975e2a199b34db9c schema:name pubmed_id
97 schema:value 11694880
98 rdf:type schema:PropertyValue
99 N29c5af4928294169a8fee4b43b604045 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Proteome
101 rdf:type schema:DefinedTerm
102 N43c4f7c4787a4e02aedf677322f3dfd5 rdf:first sg:person.0653440730.78
103 rdf:rest N6db89679214d4d0981d414ae1b8c3082
104 N652b8e9e445b4d88ab51d29310fc2d07 schema:issueNumber 4
105 rdf:type schema:PublicationIssue
106 N6db89679214d4d0981d414ae1b8c3082 rdf:first sg:person.0713503445.81
107 rdf:rest Nb8b5ddf638ad43f7a70040f3517197c5
108 N71b42bb5e305469e803b34cf055b3a88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Fungal Proteins
110 rdf:type schema:DefinedTerm
111 N7b85de7cc1d144b2b0620441c7eada58 schema:name doi
112 schema:value 10.1038/ng776
113 rdf:type schema:PropertyValue
114 N7e3398e9b42047158ddb1c5d0138d8bd schema:volumeNumber 29
115 rdf:type schema:PublicationVolume
116 N9d10039ee78d4c4e901d0c662297da4c rdf:first sg:person.0657302030.33
117 rdf:rest rdf:nil
118 Na04cfacd4bd84fc385574ccb091328f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Genome, Fungal
120 rdf:type schema:DefinedTerm
121 Nab0950d4e05f4f41b25361eb8c38f818 schema:name dimensions_id
122 schema:value pub.1024019002
123 rdf:type schema:PropertyValue
124 Nb8b5ddf638ad43f7a70040f3517197c5 rdf:first sg:person.01115626315.03
125 rdf:rest N9d10039ee78d4c4e901d0c662297da4c
126 Nec59b9c0b3074158a3c7fe7d24f141c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Saccharomyces cerevisiae
128 rdf:type schema:DefinedTerm
129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biological Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
133 schema:name Genetics
134 rdf:type schema:DefinedTerm
135 sg:grant.2529015 http://pending.schema.org/fundedItem sg:pub.10.1038/ng776
136 rdf:type schema:MonetaryGrant
137 sg:journal.1103138 schema:issn 1061-4036
138 1546-1718
139 schema:name Nature Genetics
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01115626315.03 schema:affiliation grid-institutes:grid.38142.3c
143 schema:familyName Church
144 schema:givenName George M.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03
146 rdf:type schema:Person
147 sg:person.0653440730.78 schema:affiliation grid-institutes:grid.38142.3c
148 schema:familyName Ge
149 schema:givenName Hui
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653440730.78
151 rdf:type schema:Person
152 sg:person.0657302030.33 schema:affiliation grid-institutes:grid.38142.3c
153 schema:familyName Vidal
154 schema:givenName Marc
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657302030.33
156 rdf:type schema:Person
157 sg:person.0713503445.81 schema:affiliation grid-institutes:grid.62560.37
158 schema:familyName Liu
159 schema:givenName Zhihua
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713503445.81
161 rdf:type schema:Person
162 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
163 https://doi.org/10.1038/10343
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/35001009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773549
166 https://doi.org/10.1038/35001009
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/35015701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028135585
169 https://doi.org/10.1038/35015701
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/35015709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030361158
172 https://doi.org/10.1038/35015709
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/35048107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010548523
175 https://doi.org/10.1038/35048107
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/35066084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009559478
178 https://doi.org/10.1038/35066084
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/82539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047742057
181 https://doi.org/10.1038/82539
182 rdf:type schema:CreativeWork
183 grid-institutes:grid.38142.3c schema:alternateName Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 02115, Boston, Massachusetts, USA
184 The Lipper Center for Computational Genetics and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
185 schema:name Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 02115, Boston, Massachusetts, USA
186 The Lipper Center for Computational Genetics and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
187 rdf:type schema:Organization
188 grid-institutes:grid.62560.37 schema:alternateName Department of Neurology, Brigham and Women's Hospital and Center for Neurologic Diseases, Harvard Medical School, Boston, Massachusetts, USA
189 schema:name Department of Neurology, Brigham and Women's Hospital and Center for Neurologic Diseases, Harvard Medical School, Boston, Massachusetts, USA
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...