A new multipoint method for genome-wide association studies by imputation of genotypes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-07

AUTHORS

Jonathan Marchini, Bryan Howie, Simon Myers, Gil McVean, Peter Donnelly

ABSTRACT

Genome-wide association studies are set to become the method of choice for uncovering the genetic basis of human diseases. A central challenge in this area is the development of powerful multipoint methods that can detect causal variants that have not been directly genotyped. We propose a coherent analysis framework that treats the problem as one involving missing or uncertain genotypes. Central to our approach is a model-based imputation method for inferring genotypes at observed or unobserved SNPs, leading to improved power over existing methods for multipoint association mapping. Using real genome-wide association study data, we show that our approach (i) is accurate and well calibrated, (ii) provides detailed views of associated regions that facilitate follow-up studies and (iii) can be used to validate and correct data at genotyped markers. A notable future use of our method will be to boost power by combining data from genome-wide scans that use different SNP sets. More... »

PAGES

906-913

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng2088

DOI

http://dx.doi.org/10.1038/ng2088

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046979341

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17572673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marchini", 
        "givenName": "Jonathan", 
        "id": "sg:person.014735204720.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014735204720.83"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Howie", 
        "givenName": "Bryan", 
        "id": "sg:person.01202203254.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202203254.35"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Myers", 
        "givenName": "Simon", 
        "id": "sg:person.01016507311.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016507311.23"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "McVean", 
        "givenName": "Gil", 
        "id": "sg:person.07717657417.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717657417.22"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Donnelly", 
        "givenName": "Peter", 
        "id": "sg:person.01371335603.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371335603.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004556449", 
          "https://doi.org/10.1038/nature05911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004616640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006701323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006701323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014972274", 
          "https://doi.org/10.1038/ng1911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014972274", 
          "https://doi.org/10.1038/ng1911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017217223", 
          "https://doi.org/10.1038/ng1537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017217223", 
          "https://doi.org/10.1038/ng1537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017662364", 
          "https://doi.org/10.1038/ng1376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017662364", 
          "https://doi.org/10.1038/ng1376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020115583", 
          "https://doi.org/10.1038/ng1899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020115583", 
          "https://doi.org/10.1038/ng1899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00997.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.031799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021143102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.031799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021143102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022630576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/319501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027413555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db06-0355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027504453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5675406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029225716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029660577", 
          "https://doi.org/10.1038/nrg1916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029660577", 
          "https://doi.org/10.1038/nrg1916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030749896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030749896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000152448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041243572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042975627", 
          "https://doi.org/10.1038/ng1669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042975627", 
          "https://doi.org/10.1038/ng1669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042975627", 
          "https://doi.org/10.1038/ng1669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.84.8.2363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044151047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048454480", 
          "https://doi.org/10.1038/ng1732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048454480", 
          "https://doi.org/10.1038/ng1732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050281556", 
          "https://doi.org/10.1038/ng1653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050281556", 
          "https://doi.org/10.1038/ng1653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050281556", 
          "https://doi.org/10.1038/ng1653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925490", 
          "https://doi.org/10.1038/nature05329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925490", 
          "https://doi.org/10.1038/nature05329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925490", 
          "https://doi.org/10.1038/nature05329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/502802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058783626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5281.1516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074882317", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075335894", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076619967", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-07", 
    "datePublishedReg": "2007-07-01", 
    "description": "Genome-wide association studies are set to become the method of choice for uncovering the genetic basis of human diseases. A central challenge in this area is the development of powerful multipoint methods that can detect causal variants that have not been directly genotyped. We propose a coherent analysis framework that treats the problem as one involving missing or uncertain genotypes. Central to our approach is a model-based imputation method for inferring genotypes at observed or unobserved SNPs, leading to improved power over existing methods for multipoint association mapping. Using real genome-wide association study data, we show that our approach (i) is accurate and well calibrated, (ii) provides detailed views of associated regions that facilitate follow-up studies and (iii) can be used to validate and correct data at genotyped markers. A notable future use of our method will be to boost power by combining data from genome-wide scans that use different SNP sets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng2088", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "A new multipoint method for genome-wide association studies by imputation of genotypes", 
    "pagination": "906-913", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dfcb270bcbd08fcc06fadc1f0c1b881befd7d5972ab8542b9203f54c82387b35"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17572673"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng2088"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046979341"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng2088", 
      "https://app.dimensions.ai/details/publication/pub.1046979341"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/ng/journal/v39/n7/full/ng2088.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng2088'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng2088'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng2088'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng2088'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      65 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng2088 schema:about N3f3c9714eea14141a0cb5f1820d31bc5
2 N6359cfc3e8d44801abd94a507e575552
3 N7c593cdf5d7e44a88381a5e57296c26b
4 N84f78ddf36944a1ca3ee54c74710e7da
5 N9e277e174f6a4487b6c5a9d5ec3b2f20
6 Naeebb11db56e4026a9134c547d008cf3
7 Nc1eef0af930844259d20f02e421a6c49
8 Nd5e48a6fece4449b9215aa707852b414
9 Ne7fe40f46f1446c383f4ecacd6328193
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author Naa1a95cb433b4217ade48a194d884b33
13 schema:citation sg:pub.10.1038/nature04226
14 sg:pub.10.1038/nature05329
15 sg:pub.10.1038/nature05911
16 sg:pub.10.1038/ng1376
17 sg:pub.10.1038/ng1537
18 sg:pub.10.1038/ng1653
19 sg:pub.10.1038/ng1669
20 sg:pub.10.1038/ng1732
21 sg:pub.10.1038/ng1899
22 sg:pub.10.1038/ng1911
23 sg:pub.10.1038/nrg1916
24 https://app.dimensions.ai/details/publication/pub.1074882317
25 https://app.dimensions.ai/details/publication/pub.1075335894
26 https://app.dimensions.ai/details/publication/pub.1076619967
27 https://doi.org/10.1002/gepi.20061
28 https://doi.org/10.1002/gepi.20080
29 https://doi.org/10.1002/gepi.20142
30 https://doi.org/10.1073/pnas.84.8.2363
31 https://doi.org/10.1086/302959
32 https://doi.org/10.1086/319501
33 https://doi.org/10.1086/502802
34 https://doi.org/10.1101/gr.5675406
35 https://doi.org/10.1111/j.0006-341x.1999.00997.x
36 https://doi.org/10.1126/science.273.5281.1516
37 https://doi.org/10.1159/000152448
38 https://doi.org/10.1534/genetics.104.031799
39 https://doi.org/10.2337/db06-0355
40 schema:datePublished 2007-07
41 schema:datePublishedReg 2007-07-01
42 schema:description Genome-wide association studies are set to become the method of choice for uncovering the genetic basis of human diseases. A central challenge in this area is the development of powerful multipoint methods that can detect causal variants that have not been directly genotyped. We propose a coherent analysis framework that treats the problem as one involving missing or uncertain genotypes. Central to our approach is a model-based imputation method for inferring genotypes at observed or unobserved SNPs, leading to improved power over existing methods for multipoint association mapping. Using real genome-wide association study data, we show that our approach (i) is accurate and well calibrated, (ii) provides detailed views of associated regions that facilitate follow-up studies and (iii) can be used to validate and correct data at genotyped markers. A notable future use of our method will be to boost power by combining data from genome-wide scans that use different SNP sets.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N06ce4eb5d3dc4481b6b9c8d2ad69e272
47 N98a7868d5e3c42318c988096810424e7
48 sg:journal.1103138
49 schema:name A new multipoint method for genome-wide association studies by imputation of genotypes
50 schema:pagination 906-913
51 schema:productId N1e035bb2b78e4c80b8511330e6967644
52 N3a922458319f4bd4960bc39b244e2133
53 N3d7a1917efa74d0bbfcdb0026623b02f
54 N625de579e2cd4ddb8d82e1c3fd8ad7f3
55 Nac6849bc5f314d81a4bc75b0cbff939a
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046979341
57 https://doi.org/10.1038/ng2088
58 schema:sdDatePublished 2019-04-10T19:45
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N74acbcb05ab6484abce8abbd77f8b696
61 schema:url http://www.nature.com/ng/journal/v39/n7/full/ng2088.html
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N06ce4eb5d3dc4481b6b9c8d2ad69e272 schema:issueNumber 7
66 rdf:type schema:PublicationIssue
67 N1e035bb2b78e4c80b8511330e6967644 schema:name doi
68 schema:value 10.1038/ng2088
69 rdf:type schema:PropertyValue
70 N233cbfed55284e5eb4fa079887c4ab3f rdf:first sg:person.01202203254.35
71 rdf:rest N86aa1b78fc8449099d41c93b003d2d16
72 N2c722a12e8294233b9cbddc4a72c7879 rdf:first sg:person.01371335603.13
73 rdf:rest rdf:nil
74 N3a922458319f4bd4960bc39b244e2133 schema:name dimensions_id
75 schema:value pub.1046979341
76 rdf:type schema:PropertyValue
77 N3d7a1917efa74d0bbfcdb0026623b02f schema:name nlm_unique_id
78 schema:value 9216904
79 rdf:type schema:PropertyValue
80 N3f3c9714eea14141a0cb5f1820d31bc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Genetic Markers
82 rdf:type schema:DefinedTerm
83 N625de579e2cd4ddb8d82e1c3fd8ad7f3 schema:name pubmed_id
84 schema:value 17572673
85 rdf:type schema:PropertyValue
86 N6359cfc3e8d44801abd94a507e575552 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Genetics, Population
88 rdf:type schema:DefinedTerm
89 N74acbcb05ab6484abce8abbd77f8b696 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N7c593cdf5d7e44a88381a5e57296c26b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Genotype
93 rdf:type schema:DefinedTerm
94 N84f78ddf36944a1ca3ee54c74710e7da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Models, Genetic
96 rdf:type schema:DefinedTerm
97 N86aa1b78fc8449099d41c93b003d2d16 rdf:first sg:person.01016507311.23
98 rdf:rest N95834a6197c346dcad3c1c00025d9fd9
99 N95834a6197c346dcad3c1c00025d9fd9 rdf:first sg:person.07717657417.22
100 rdf:rest N2c722a12e8294233b9cbddc4a72c7879
101 N98a7868d5e3c42318c988096810424e7 schema:volumeNumber 39
102 rdf:type schema:PublicationVolume
103 N9e277e174f6a4487b6c5a9d5ec3b2f20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Polymorphism, Single Nucleotide
105 rdf:type schema:DefinedTerm
106 Naa1a95cb433b4217ade48a194d884b33 rdf:first sg:person.014735204720.83
107 rdf:rest N233cbfed55284e5eb4fa079887c4ab3f
108 Nac6849bc5f314d81a4bc75b0cbff939a schema:name readcube_id
109 schema:value dfcb270bcbd08fcc06fadc1f0c1b881befd7d5972ab8542b9203f54c82387b35
110 rdf:type schema:PropertyValue
111 Naeebb11db56e4026a9134c547d008cf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Case-Control Studies
113 rdf:type schema:DefinedTerm
114 Nc1eef0af930844259d20f02e421a6c49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Humans
116 rdf:type schema:DefinedTerm
117 Nd5e48a6fece4449b9215aa707852b414 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Genomics
119 rdf:type schema:DefinedTerm
120 Ne7fe40f46f1446c383f4ecacd6328193 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Genome, Human
122 rdf:type schema:DefinedTerm
123 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
124 schema:name Biological Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
127 schema:name Genetics
128 rdf:type schema:DefinedTerm
129 sg:journal.1103138 schema:issn 1061-4036
130 1546-1718
131 schema:name Nature Genetics
132 rdf:type schema:Periodical
133 sg:person.01016507311.23 schema:familyName Myers
134 schema:givenName Simon
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016507311.23
136 rdf:type schema:Person
137 sg:person.01202203254.35 schema:familyName Howie
138 schema:givenName Bryan
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202203254.35
140 rdf:type schema:Person
141 sg:person.01371335603.13 schema:familyName Donnelly
142 schema:givenName Peter
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371335603.13
144 rdf:type schema:Person
145 sg:person.014735204720.83 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
146 schema:familyName Marchini
147 schema:givenName Jonathan
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014735204720.83
149 rdf:type schema:Person
150 sg:person.07717657417.22 schema:familyName McVean
151 schema:givenName Gil
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717657417.22
153 rdf:type schema:Person
154 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
155 https://doi.org/10.1038/nature04226
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nature05329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925490
158 https://doi.org/10.1038/nature05329
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nature05911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556449
161 https://doi.org/10.1038/nature05911
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/ng1376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017662364
164 https://doi.org/10.1038/ng1376
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/ng1537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017217223
167 https://doi.org/10.1038/ng1537
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/ng1653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050281556
170 https://doi.org/10.1038/ng1653
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/ng1669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042975627
173 https://doi.org/10.1038/ng1669
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/ng1732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048454480
176 https://doi.org/10.1038/ng1732
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/ng1899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020115583
179 https://doi.org/10.1038/ng1899
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/ng1911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014972274
182 https://doi.org/10.1038/ng1911
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nrg1916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029660577
185 https://doi.org/10.1038/nrg1916
186 rdf:type schema:CreativeWork
187 https://app.dimensions.ai/details/publication/pub.1074882317 schema:CreativeWork
188 https://app.dimensions.ai/details/publication/pub.1075335894 schema:CreativeWork
189 https://app.dimensions.ai/details/publication/pub.1076619967 schema:CreativeWork
190 https://doi.org/10.1002/gepi.20061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004616640
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/gepi.20080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030749896
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/gepi.20142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006701323
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.84.8.2363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044151047
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1086/302959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022630576
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1086/319501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027413555
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1086/502802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058783626
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1101/gr.5675406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029225716
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.0006-341x.1999.00997.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081768
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.273.5281.1516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554106
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1159/000152448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041243572
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1534/genetics.104.031799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021143102
213 rdf:type schema:CreativeWork
214 https://doi.org/10.2337/db06-0355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027504453
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
217 schema:name Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK.
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...