Automating sequence-based detection and genotyping of SNPs from diploid samples View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-03

AUTHORS

Matthew Stephens, James S Sloan, P D Robertson, Paul Scheet, Deborah A Nickerson

ABSTRACT

The detection of sequence variation, for which DNA sequencing has emerged as the most sensitive and automated approach, forms the basis of all genetic analysis. Here we describe and illustrate an algorithm that accurately detects and genotypes SNPs from fluorescence-based sequence data. Because the algorithm focuses particularly on detecting SNPs through the identification of heterozygous individuals, it is especially well suited to the detection of SNPs in diploid samples obtained after DNA amplification. It is substantially more accurate than existing approaches and, notably, provides a useful quantitative measure of its confidence in each potential SNP detected and in each genotype called. Calls assigned the highest confidence are sufficiently reliable to remove the need for manual review in several contexts. For example, for sequence data from 47-90 individuals sequenced on both the forward and reverse strands, the highest-confidence calls from our algorithm detected 93% of all SNPs and 100% of high-frequency SNPs, with no false positive SNPs identified and 99.9% genotyping accuracy. This algorithm is implemented in a software package, PolyPhred version 5.0, which is freely available for academic use. More... »

PAGES

375-381

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng1746

DOI

http://dx.doi.org/10.1038/ng1746

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026251895

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16493422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diploidy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Statistics, University of Washington, Seattle, Washington 98195, USA.", 
            "Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stephens", 
        "givenName": "Matthew", 
        "id": "sg:person.0773503655.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773503655.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sloan", 
        "givenName": "James S", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robertson", 
        "givenName": "P D", 
        "id": "sg:person.01245345141.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245345141.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Statistics, University of Washington, Seattle, Washington 98195, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheet", 
        "givenName": "Paul", 
        "id": "sg:person.01231321543.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231321543.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nickerson", 
        "givenName": "Deborah A", 
        "id": "sg:person.011702707617.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702707617.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006382622", 
          "https://doi.org/10.1038/ng1128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006382622", 
          "https://doi.org/10.1038/ng1128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.1994.1469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008038684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1367-5931(00)00171-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008051787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.194201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008144266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973203", 
          "https://doi.org/10.1038/10290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973203", 
          "https://doi.org/10.1038/10290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/70570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011138564", 
          "https://doi.org/10.1038/70570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/70570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011138564", 
          "https://doi.org/10.1038/70570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.3.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018564763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35038586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024648314", 
          "https://doi.org/10.1038/35038586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35038586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024648314", 
          "https://doi.org/10.1038/35038586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1105436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027070431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.14.2745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034242814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.3.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038920266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2754005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040625310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddi006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045878621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.3.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048253030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/96214rr02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082989088"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-03", 
    "datePublishedReg": "2006-03-01", 
    "description": "The detection of sequence variation, for which DNA sequencing has emerged as the most sensitive and automated approach, forms the basis of all genetic analysis. Here we describe and illustrate an algorithm that accurately detects and genotypes SNPs from fluorescence-based sequence data. Because the algorithm focuses particularly on detecting SNPs through the identification of heterozygous individuals, it is especially well suited to the detection of SNPs in diploid samples obtained after DNA amplification. It is substantially more accurate than existing approaches and, notably, provides a useful quantitative measure of its confidence in each potential SNP detected and in each genotype called. Calls assigned the highest confidence are sufficiently reliable to remove the need for manual review in several contexts. For example, for sequence data from 47-90 individuals sequenced on both the forward and reverse strands, the highest-confidence calls from our algorithm detected 93% of all SNPs and 100% of high-frequency SNPs, with no false positive SNPs identified and 99.9% genotyping accuracy. This algorithm is implemented in a software package, PolyPhred version 5.0, which is freely available for academic use.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng1746", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2691660", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2529130", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2684527", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5247098", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Automating sequence-based detection and genotyping of SNPs from diploid samples", 
    "pagination": "375-381", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7d0ffa9756e2a3cf915a717707f03af54a62190f7aa5223d127774a37ba180ca"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16493422"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng1746"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026251895"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng1746", 
      "https://app.dimensions.ai/details/publication/pub.1026251895"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87106_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/ng1746"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng1746'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng1746'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng1746'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng1746'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      54 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng1746 schema:about N3760777133b94772a1612aa27f901d68
2 N3f3c1ab1cb2d4a77b24535fa4d077efa
3 N4e760571ca81464a8beef02078eacc26
4 N5603de5c01504280b275baa449a6fb2d
5 N67c8075d743e46cdafbeb82bcc4c906c
6 N9558284a49f841aeb44303d2b31751ca
7 N9997ecad0f0c47388c7323e4c9381937
8 Nb30fc94241964aa59e1454f15662eca7
9 Nec9c0fa417774752ac9e44ce73867609
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N67e318b2c2eb4364bf124d4455a8fde0
13 schema:citation sg:pub.10.1038/10290
14 sg:pub.10.1038/35038586
15 sg:pub.10.1038/70570
16 sg:pub.10.1038/nature04226
17 sg:pub.10.1038/ng1128
18 https://doi.org/10.1006/geno.1994.1469
19 https://doi.org/10.1016/s1367-5931(00)00171-x
20 https://doi.org/10.1093/hmg/ddi006
21 https://doi.org/10.1093/nar/25.14.2745
22 https://doi.org/10.1101/gr.194201
23 https://doi.org/10.1101/gr.2754005
24 https://doi.org/10.1101/gr.8.3.175
25 https://doi.org/10.1101/gr.8.3.186
26 https://doi.org/10.1101/gr.8.3.195
27 https://doi.org/10.1126/science.1105436
28 https://doi.org/10.2144/96214rr02
29 schema:datePublished 2006-03
30 schema:datePublishedReg 2006-03-01
31 schema:description The detection of sequence variation, for which DNA sequencing has emerged as the most sensitive and automated approach, forms the basis of all genetic analysis. Here we describe and illustrate an algorithm that accurately detects and genotypes SNPs from fluorescence-based sequence data. Because the algorithm focuses particularly on detecting SNPs through the identification of heterozygous individuals, it is especially well suited to the detection of SNPs in diploid samples obtained after DNA amplification. It is substantially more accurate than existing approaches and, notably, provides a useful quantitative measure of its confidence in each potential SNP detected and in each genotype called. Calls assigned the highest confidence are sufficiently reliable to remove the need for manual review in several contexts. For example, for sequence data from 47-90 individuals sequenced on both the forward and reverse strands, the highest-confidence calls from our algorithm detected 93% of all SNPs and 100% of high-frequency SNPs, with no false positive SNPs identified and 99.9% genotyping accuracy. This algorithm is implemented in a software package, PolyPhred version 5.0, which is freely available for academic use.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N8a26304619584747bc93ae0ad0e33653
36 Nb6bb7deff5ad4b1489d87853334e801c
37 sg:journal.1103138
38 schema:name Automating sequence-based detection and genotyping of SNPs from diploid samples
39 schema:pagination 375-381
40 schema:productId N28b67f3c58784830b70d7789a3956765
41 N2ad88bc5d8154d18b7f1c61d3aa4c18d
42 N383eb9a3be034a40a5ac2cf674748a86
43 Nb7fc6775c1c04c04b7280ca191cf9d9a
44 Nd2beddbd3eaf4c58a920de34269488c8
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026251895
46 https://doi.org/10.1038/ng1746
47 schema:sdDatePublished 2019-04-11T12:25
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N8af4efb9f8f64ec7b6c7731b2f04f68d
50 schema:url http://www.nature.com/articles/ng1746
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N28b67f3c58784830b70d7789a3956765 schema:name doi
55 schema:value 10.1038/ng1746
56 rdf:type schema:PropertyValue
57 N2ad88bc5d8154d18b7f1c61d3aa4c18d schema:name pubmed_id
58 schema:value 16493422
59 rdf:type schema:PropertyValue
60 N2c2f1407d2394da9ac84ef1ea2c609b7 rdf:first sg:person.01245345141.74
61 rdf:rest N9d35a8cdf0514d118cef8ecbc8c8a9d0
62 N3760777133b94772a1612aa27f901d68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Polymorphism, Single Nucleotide
64 rdf:type schema:DefinedTerm
65 N383eb9a3be034a40a5ac2cf674748a86 schema:name dimensions_id
66 schema:value pub.1026251895
67 rdf:type schema:PropertyValue
68 N3f3c1ab1cb2d4a77b24535fa4d077efa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Reproducibility of Results
70 rdf:type schema:DefinedTerm
71 N4e760571ca81464a8beef02078eacc26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Automation
73 rdf:type schema:DefinedTerm
74 N5603de5c01504280b275baa449a6fb2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Genetic Variation
76 rdf:type schema:DefinedTerm
77 N67c8075d743e46cdafbeb82bcc4c906c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name DNA
79 rdf:type schema:DefinedTerm
80 N67e318b2c2eb4364bf124d4455a8fde0 rdf:first sg:person.0773503655.04
81 rdf:rest Ne2ecb70fd16343d3b7aabf8003441778
82 N8a26304619584747bc93ae0ad0e33653 schema:volumeNumber 38
83 rdf:type schema:PublicationVolume
84 N8af4efb9f8f64ec7b6c7731b2f04f68d schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N9558284a49f841aeb44303d2b31751ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Sensitivity and Specificity
88 rdf:type schema:DefinedTerm
89 N9997ecad0f0c47388c7323e4c9381937 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Genotype
91 rdf:type schema:DefinedTerm
92 N9d35a8cdf0514d118cef8ecbc8c8a9d0 rdf:first sg:person.01231321543.30
93 rdf:rest Ncff660f234a346f39a3f65beef59e83e
94 Nb30fc94241964aa59e1454f15662eca7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Diploidy
96 rdf:type schema:DefinedTerm
97 Nb6bb7deff5ad4b1489d87853334e801c schema:issueNumber 3
98 rdf:type schema:PublicationIssue
99 Nb7fc6775c1c04c04b7280ca191cf9d9a schema:name nlm_unique_id
100 schema:value 9216904
101 rdf:type schema:PropertyValue
102 Ncff660f234a346f39a3f65beef59e83e rdf:first sg:person.011702707617.34
103 rdf:rest rdf:nil
104 Nd2beddbd3eaf4c58a920de34269488c8 schema:name readcube_id
105 schema:value 7d0ffa9756e2a3cf915a717707f03af54a62190f7aa5223d127774a37ba180ca
106 rdf:type schema:PropertyValue
107 Nd50e24b8b90845c8a82f24bbaafd6062 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
108 schema:familyName Sloan
109 schema:givenName James S
110 rdf:type schema:Person
111 Ne2ecb70fd16343d3b7aabf8003441778 rdf:first Nd50e24b8b90845c8a82f24bbaafd6062
112 rdf:rest N2c2f1407d2394da9ac84ef1ea2c609b7
113 Nec9c0fa417774752ac9e44ce73867609 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Algorithms
115 rdf:type schema:DefinedTerm
116 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
117 schema:name Biological Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
120 schema:name Genetics
121 rdf:type schema:DefinedTerm
122 sg:grant.2529130 http://pending.schema.org/fundedItem sg:pub.10.1038/ng1746
123 rdf:type schema:MonetaryGrant
124 sg:grant.2684527 http://pending.schema.org/fundedItem sg:pub.10.1038/ng1746
125 rdf:type schema:MonetaryGrant
126 sg:grant.2691660 http://pending.schema.org/fundedItem sg:pub.10.1038/ng1746
127 rdf:type schema:MonetaryGrant
128 sg:grant.5247098 http://pending.schema.org/fundedItem sg:pub.10.1038/ng1746
129 rdf:type schema:MonetaryGrant
130 sg:journal.1103138 schema:issn 1061-4036
131 1546-1718
132 schema:name Nature Genetics
133 rdf:type schema:Periodical
134 sg:person.011702707617.34 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
135 schema:familyName Nickerson
136 schema:givenName Deborah A
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702707617.34
138 rdf:type schema:Person
139 sg:person.01231321543.30 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
140 schema:familyName Scheet
141 schema:givenName Paul
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231321543.30
143 rdf:type schema:Person
144 sg:person.01245345141.74 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
145 schema:familyName Robertson
146 schema:givenName P D
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245345141.74
148 rdf:type schema:Person
149 sg:person.0773503655.04 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
150 schema:familyName Stephens
151 schema:givenName Matthew
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773503655.04
153 rdf:type schema:Person
154 sg:pub.10.1038/10290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973203
155 https://doi.org/10.1038/10290
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/35038586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024648314
158 https://doi.org/10.1038/35038586
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/70570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011138564
161 https://doi.org/10.1038/70570
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
164 https://doi.org/10.1038/nature04226
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/ng1128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006382622
167 https://doi.org/10.1038/ng1128
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1006/geno.1994.1469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008038684
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s1367-5931(00)00171-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008051787
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/hmg/ddi006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045878621
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/nar/25.14.2745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034242814
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1101/gr.194201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008144266
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1101/gr.2754005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040625310
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1101/gr.8.3.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048253030
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1101/gr.8.3.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038920266
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1101/gr.8.3.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018564763
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.1105436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027070431
188 rdf:type schema:CreativeWork
189 https://doi.org/10.2144/96214rr02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082989088
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
192 schema:name Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
193 Department of Statistics, University of Washington, Seattle, Washington 98195, USA.
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...