Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-01-15

AUTHORS

Andrew D Skol, Laura J Scott, Gonçalo R Abecasis, Michael Boehnke

ABSTRACT

Genome-wide association is a promising approach to identify common genetic variants that predispose to human disease1,2,3,4. Because of the high cost of genotyping hundreds of thousands of markers on thousands of subjects, genome-wide association studies often follow a staged design in which a proportion (πsamples) of the available samples are genotyped on a large number of markers in stage 1, and a proportion (πsamples) of these markers are later followed up by genotyping them on the remaining samples in stage 2. The standard strategy for analyzing such two-stage data is to view stage 2 as a replication study and focus on findings that reach statistical significance when stage 2 data are considered alone2. We demonstrate that the alternative strategy of jointly analyzing the data from both stages almost always results in increased power to detect genetic association, despite the need to use more stringent significance levels, even when effect sizes differ between the two stages. We recommend joint analysis for all two-stage genome-wide association studies, especially when a relatively large proportion of the samples are genotyped in stage 1 (πsamples ≥ 0.30), and a relatively large proportion of markers are selected for follow-up in stage 2 (πmarkers ≥ 0.01). More... »

PAGES

209-213

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng1706

DOI

http://dx.doi.org/10.1038/ng1706

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009205998

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16415888


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Replication", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Heterogeneity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Medical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, 48109-2029, Ann Arbor, Michigan, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, 48109-2029, Ann Arbor, Michigan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skol", 
        "givenName": "Andrew D", 
        "id": "sg:person.01365042603.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365042603.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, 48109-2029, Ann Arbor, Michigan, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, 48109-2029, Ann Arbor, Michigan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scott", 
        "givenName": "Laura J", 
        "id": "sg:person.0754607175.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754607175.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, 48109-2029, Ann Arbor, Michigan, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, 48109-2029, Ann Arbor, Michigan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abecasis", 
        "givenName": "Gon\u00e7alo R", 
        "id": "sg:person.0641525362.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641525362.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, 48109-2029, Ann Arbor, Michigan, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, 48109-2029, Ann Arbor, Michigan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boehnke", 
        "givenName": "Michael", 
        "id": "sg:person.01061331247.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061331247.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35057149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046153445", 
          "https://doi.org/10.1038/35057149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022754728", 
          "https://doi.org/10.1038/nrg1521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017573512", 
          "https://doi.org/10.1038/ng1001-233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/9642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052869833", 
          "https://doi.org/10.1038/9642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35052543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048988403", 
          "https://doi.org/10.1038/35052543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033654326", 
          "https://doi.org/10.1038/nature02168"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-01-15", 
    "datePublishedReg": "2006-01-15", 
    "description": "Genome-wide association is a promising approach to identify common genetic variants that predispose to human disease1,2,3,4. Because of the high cost of genotyping hundreds of thousands of markers on thousands of subjects, genome-wide association studies often follow a staged design in which a proportion (\u03c0samples) of the available samples are genotyped on a large number of markers in stage 1, and a proportion (\u03c0samples) of these markers are later followed up by genotyping them on the remaining samples in stage 2. The standard strategy for analyzing such two-stage data is to view stage 2 as a replication study and focus on findings that reach statistical significance when stage 2 data are considered alone2. We demonstrate that the alternative strategy of jointly analyzing the data from both stages almost always results in increased power to detect genetic association, despite the need to use more stringent significance levels, even when effect sizes differ between the two stages. We recommend joint analysis for all two-stage genome-wide association studies, especially when a relatively large proportion of the samples are genotyped in stage 1 (\u03c0samples \u2265 0.30), and a relatively large proportion of markers are selected for follow-up in stage 2 (\u03c0markers \u2265 0.01).", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ng1706", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "genome-wide association studies", 
      "two-stage genome-wide association study", 
      "association studies", 
      "genome-wide association", 
      "common genetic variants", 
      "stringent significance level", 
      "genetic variants", 
      "genetic association", 
      "stage 2 data", 
      "joint analysis", 
      "thousands of subjects", 
      "large proportion", 
      "markers", 
      "replication study", 
      "hundreds of thousands", 
      "alternative strategy", 
      "thousands", 
      "large number", 
      "variants", 
      "stage", 
      "humans", 
      "proportion", 
      "analysis", 
      "hundreds", 
      "promising approach", 
      "two-stage data", 
      "association", 
      "study", 
      "strategies", 
      "available samples", 
      "levels", 
      "data", 
      "significance", 
      "number", 
      "samples", 
      "size", 
      "stage 2", 
      "stage 1", 
      "findings", 
      "effect size", 
      "high cost", 
      "approach", 
      "significance level", 
      "standard strategy", 
      "need", 
      "statistical significance", 
      "cost", 
      "design", 
      "power", 
      "subjects"
    ], 
    "name": "Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies", 
    "pagination": "209-213", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009205998"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng1706"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16415888"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng1706", 
      "https://app.dimensions.ai/details/publication/pub.1009205998"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ng1706"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng1706'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng1706'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng1706'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng1706'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      92 URIs      78 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng1706 schema:about N20cc98e89f4541d6b0e5c9517add6857
2 N35ed81ad4bb3485f8b79deb95d7d91d0
3 N4103bceccd384279912ff7eee3f1ae59
4 N5378855102eb45118a51b7b3fcc20058
5 N67745a8537f1488b8a2986064f366bd6
6 N6ef7147da32f4b23a705262bf980c293
7 N7462317d3d6b4004a4a93192d041a1d4
8 Na1f50e89c7da41bf8de228961e1f447e
9 Nb813bbafcf0742dabc25cf8d43bdba73
10 Nd0470132a8084ecf964bcade58fb64b9
11 Nde3d6bdf068548e582760b06ce60b743
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N67e939204eeb41f8bcbf9a85c548a676
15 schema:citation sg:pub.10.1038/35052543
16 sg:pub.10.1038/35057149
17 sg:pub.10.1038/9642
18 sg:pub.10.1038/nature02168
19 sg:pub.10.1038/ng1001-233
20 sg:pub.10.1038/nrg1521
21 schema:datePublished 2006-01-15
22 schema:datePublishedReg 2006-01-15
23 schema:description Genome-wide association is a promising approach to identify common genetic variants that predispose to human disease1,2,3,4. Because of the high cost of genotyping hundreds of thousands of markers on thousands of subjects, genome-wide association studies often follow a staged design in which a proportion (πsamples) of the available samples are genotyped on a large number of markers in stage 1, and a proportion (πsamples) of these markers are later followed up by genotyping them on the remaining samples in stage 2. The standard strategy for analyzing such two-stage data is to view stage 2 as a replication study and focus on findings that reach statistical significance when stage 2 data are considered alone2. We demonstrate that the alternative strategy of jointly analyzing the data from both stages almost always results in increased power to detect genetic association, despite the need to use more stringent significance levels, even when effect sizes differ between the two stages. We recommend joint analysis for all two-stage genome-wide association studies, especially when a relatively large proportion of the samples are genotyped in stage 1 (πsamples ≥ 0.30), and a relatively large proportion of markers are selected for follow-up in stage 2 (πmarkers ≥ 0.01).
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N66af0bae6a8f4fa8b4d9a520e4e5bb2a
27 Ne92672a44db2409e81d1a18d0c1fcb27
28 sg:journal.1103138
29 schema:keywords alternative strategy
30 analysis
31 approach
32 association
33 association studies
34 available samples
35 common genetic variants
36 cost
37 data
38 design
39 effect size
40 findings
41 genetic association
42 genetic variants
43 genome-wide association
44 genome-wide association studies
45 high cost
46 humans
47 hundreds
48 hundreds of thousands
49 joint analysis
50 large number
51 large proportion
52 levels
53 markers
54 need
55 number
56 power
57 promising approach
58 proportion
59 replication study
60 samples
61 significance
62 significance level
63 size
64 stage
65 stage 1
66 stage 2
67 stage 2 data
68 standard strategy
69 statistical significance
70 strategies
71 stringent significance level
72 study
73 subjects
74 thousands
75 thousands of subjects
76 two-stage data
77 two-stage genome-wide association study
78 variants
79 schema:name Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies
80 schema:pagination 209-213
81 schema:productId N1c3e35d765604659add556b74079bd18
82 N6128815b193b443981f203621e1187ac
83 Neb3c5732513641c1bdb72e65788d09f4
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009205998
85 https://doi.org/10.1038/ng1706
86 schema:sdDatePublished 2022-09-02T15:52
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N74e478f39d584387b614dbde1d97091f
89 schema:url https://doi.org/10.1038/ng1706
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N1c3e35d765604659add556b74079bd18 schema:name pubmed_id
94 schema:value 16415888
95 rdf:type schema:PropertyValue
96 N1ff7a104af0643d6ba931af9d3fcc045 rdf:first sg:person.01061331247.57
97 rdf:rest rdf:nil
98 N20cc98e89f4541d6b0e5c9517add6857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Genetic Heterogeneity
100 rdf:type schema:DefinedTerm
101 N3243844cdbb04cddb218e0bd0ab41f8a rdf:first sg:person.0641525362.39
102 rdf:rest N1ff7a104af0643d6ba931af9d3fcc045
103 N35ed81ad4bb3485f8b79deb95d7d91d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Genome, Human
105 rdf:type schema:DefinedTerm
106 N4103bceccd384279912ff7eee3f1ae59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Genetic Predisposition to Disease
108 rdf:type schema:DefinedTerm
109 N5378855102eb45118a51b7b3fcc20058 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Genotype
111 rdf:type schema:DefinedTerm
112 N6128815b193b443981f203621e1187ac schema:name doi
113 schema:value 10.1038/ng1706
114 rdf:type schema:PropertyValue
115 N66af0bae6a8f4fa8b4d9a520e4e5bb2a schema:volumeNumber 38
116 rdf:type schema:PublicationVolume
117 N67745a8537f1488b8a2986064f366bd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Gene Frequency
119 rdf:type schema:DefinedTerm
120 N67e939204eeb41f8bcbf9a85c548a676 rdf:first sg:person.01365042603.69
121 rdf:rest N7f98d62a3dbd43c0851ac6815f8c9661
122 N6ef7147da32f4b23a705262bf980c293 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Genetic Markers
124 rdf:type schema:DefinedTerm
125 N7462317d3d6b4004a4a93192d041a1d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Humans
127 rdf:type schema:DefinedTerm
128 N74e478f39d584387b614dbde1d97091f schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 N7f98d62a3dbd43c0851ac6815f8c9661 rdf:first sg:person.0754607175.62
131 rdf:rest N3243844cdbb04cddb218e0bd0ab41f8a
132 Na1f50e89c7da41bf8de228961e1f447e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Case-Control Studies
134 rdf:type schema:DefinedTerm
135 Nb813bbafcf0742dabc25cf8d43bdba73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name DNA Replication
137 rdf:type schema:DefinedTerm
138 Nd0470132a8084ecf964bcade58fb64b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Alleles
140 rdf:type schema:DefinedTerm
141 Nde3d6bdf068548e582760b06ce60b743 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Genetics, Medical
143 rdf:type schema:DefinedTerm
144 Ne92672a44db2409e81d1a18d0c1fcb27 schema:issueNumber 2
145 rdf:type schema:PublicationIssue
146 Neb3c5732513641c1bdb72e65788d09f4 schema:name dimensions_id
147 schema:value pub.1009205998
148 rdf:type schema:PropertyValue
149 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
150 schema:name Biological Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
153 schema:name Genetics
154 rdf:type schema:DefinedTerm
155 sg:journal.1103138 schema:issn 1061-4036
156 1546-1718
157 schema:name Nature Genetics
158 schema:publisher Springer Nature
159 rdf:type schema:Periodical
160 sg:person.01061331247.57 schema:affiliation grid-institutes:grid.214458.e
161 schema:familyName Boehnke
162 schema:givenName Michael
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061331247.57
164 rdf:type schema:Person
165 sg:person.01365042603.69 schema:affiliation grid-institutes:grid.214458.e
166 schema:familyName Skol
167 schema:givenName Andrew D
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365042603.69
169 rdf:type schema:Person
170 sg:person.0641525362.39 schema:affiliation grid-institutes:grid.214458.e
171 schema:familyName Abecasis
172 schema:givenName Gonçalo R
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641525362.39
174 rdf:type schema:Person
175 sg:person.0754607175.62 schema:affiliation grid-institutes:grid.214458.e
176 schema:familyName Scott
177 schema:givenName Laura J
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754607175.62
179 rdf:type schema:Person
180 sg:pub.10.1038/35052543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048988403
181 https://doi.org/10.1038/35052543
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/35057149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046153445
184 https://doi.org/10.1038/35057149
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/9642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052869833
187 https://doi.org/10.1038/9642
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature02168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033654326
190 https://doi.org/10.1038/nature02168
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/ng1001-233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017573512
193 https://doi.org/10.1038/ng1001-233
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nrg1521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022754728
196 https://doi.org/10.1038/nrg1521
197 rdf:type schema:CreativeWork
198 grid-institutes:grid.214458.e schema:alternateName Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, 48109-2029, Ann Arbor, Michigan, USA
199 schema:name Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, 48109-2029, Ann Arbor, Michigan, USA
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...