Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-02

AUTHORS

Andrew D Skol, Laura J Scott, Gonçalo R Abecasis, Michael Boehnke

ABSTRACT

Genome-wide association is a promising approach to identify common genetic variants that predispose to human disease. Because of the high cost of genotyping hundreds of thousands of markers on thousands of subjects, genome-wide association studies often follow a staged design in which a proportion (pi(samples)) of the available samples are genotyped on a large number of markers in stage 1, and a proportion (pi(samples)) of these markers are later followed up by genotyping them on the remaining samples in stage 2. The standard strategy for analyzing such two-stage data is to view stage 2 as a replication study and focus on findings that reach statistical significance when stage 2 data are considered alone. We demonstrate that the alternative strategy of jointly analyzing the data from both stages almost always results in increased power to detect genetic association, despite the need to use more stringent significance levels, even when effect sizes differ between the two stages. We recommend joint analysis for all two-stage genome-wide association studies, especially when a relatively large proportion of the samples are genotyped in stage 1 (pi(samples) >or= 0.30), and a relatively large proportion of markers are selected for follow-up in stage 2 (pi(markers) >or= 0.01). More... »

PAGES

209-213

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng1706

DOI

http://dx.doi.org/10.1038/ng1706

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009205998

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16415888


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Replication", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Heterogeneity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Medical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, Ann Arbor, Michigan 48109-2029, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skol", 
        "givenName": "Andrew D", 
        "id": "sg:person.01365042603.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365042603.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, Ann Arbor, Michigan 48109-2029, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scott", 
        "givenName": "Laura J", 
        "id": "sg:person.0754607175.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754607175.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, Ann Arbor, Michigan 48109-2029, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abecasis", 
        "givenName": "Gon\u00e7alo R", 
        "id": "sg:person.0641525362.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641525362.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, Ann Arbor, Michigan 48109-2029, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boehnke", 
        "givenName": "Michael", 
        "id": "sg:person.01061331247.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061331247.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1159/000071807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001470112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005611482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1109557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015347593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017573512", 
          "https://doi.org/10.1038/ng1001-233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017573512", 
          "https://doi.org/10.1038/ng1001-233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2004.00207.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018887175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020332427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022754728", 
          "https://doi.org/10.1038/nrg1521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022754728", 
          "https://doi.org/10.1038/nrg1521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1105436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027070431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/tpbi.2001.1542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027740393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033654326", 
          "https://doi.org/10.1038/nature02168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033654326", 
          "https://doi.org/10.1038/nature02168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/tpbi.2001.1543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036561676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2002.00163.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039795735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046153445", 
          "https://doi.org/10.1038/35057149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046153445", 
          "https://doi.org/10.1038/35057149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047378057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000083541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047681457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35052543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048988403", 
          "https://doi.org/10.1038/35052543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35052543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048988403", 
          "https://doi.org/10.1038/35052543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/9642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052869833", 
          "https://doi.org/10.1038/9642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/9642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052869833", 
          "https://doi.org/10.1038/9642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/318195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058622329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/381716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058673418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5281.1516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.2001.21.s1.s409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074980888"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-02", 
    "datePublishedReg": "2006-02-01", 
    "description": "Genome-wide association is a promising approach to identify common genetic variants that predispose to human disease. Because of the high cost of genotyping hundreds of thousands of markers on thousands of subjects, genome-wide association studies often follow a staged design in which a proportion (pi(samples)) of the available samples are genotyped on a large number of markers in stage 1, and a proportion (pi(samples)) of these markers are later followed up by genotyping them on the remaining samples in stage 2. The standard strategy for analyzing such two-stage data is to view stage 2 as a replication study and focus on findings that reach statistical significance when stage 2 data are considered alone. We demonstrate that the alternative strategy of jointly analyzing the data from both stages almost always results in increased power to detect genetic association, despite the need to use more stringent significance levels, even when effect sizes differ between the two stages. We recommend joint analysis for all two-stage genome-wide association studies, especially when a relatively large proportion of the samples are genotyped in stage 1 (pi(samples) >or= 0.30), and a relatively large proportion of markers are selected for follow-up in stage 2 (pi(markers) >or= 0.01).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng1706", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies", 
    "pagination": "209-213", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2bdaef6c030cf9683d490aa17c732268dd95524549f3f6040fac8aa19ee8a424"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16415888"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng1706"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009205998"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng1706", 
      "https://app.dimensions.ai/details/publication/pub.1009205998"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87094_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/ng1706"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng1706'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng1706'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng1706'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng1706'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      61 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng1706 schema:about N0d0d1e851a4f408d93626fe29c3eec0c
2 N3c1765b5e82945e2972b6717cca29424
3 N414a51121903475aa1fb450e7089c05f
4 N7239b44c8e794d37b38241a828bcf52d
5 N7cf82d7d0fb1459d8b54cbada225ace6
6 Nc6f0b3b0d4a74498bdf890a548a85a0b
7 Nd27713ae19c64cb392499409cdf59a71
8 Nd69a2bead00341e4ba3c9ee9baf469a2
9 Ndc9d0398f7944094a064a11356cb49d8
10 Ndf00098c95a84e61971eb4af8082d9fe
11 Ne7e0ac1b1d8b442991f76f4979b4ac45
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author Nbc0231c3bef94593a089108390195496
15 schema:citation sg:pub.10.1038/35052543
16 sg:pub.10.1038/35057149
17 sg:pub.10.1038/9642
18 sg:pub.10.1038/nature02168
19 sg:pub.10.1038/ng1001-233
20 sg:pub.10.1038/nrg1521
21 https://doi.org/10.1002/gepi.2001.21.s1.s409
22 https://doi.org/10.1002/gepi.20047
23 https://doi.org/10.1002/gepi.20070
24 https://doi.org/10.1006/tpbi.2001.1542
25 https://doi.org/10.1006/tpbi.2001.1543
26 https://doi.org/10.1086/318195
27 https://doi.org/10.1086/381716
28 https://doi.org/10.1093/bioinformatics/19.2.287
29 https://doi.org/10.1111/j.0006-341x.2002.00163.x
30 https://doi.org/10.1111/j.0006-341x.2004.00207.x
31 https://doi.org/10.1126/science.1105436
32 https://doi.org/10.1126/science.1109557
33 https://doi.org/10.1126/science.273.5281.1516
34 https://doi.org/10.1159/000071807
35 https://doi.org/10.1159/000083541
36 schema:datePublished 2006-02
37 schema:datePublishedReg 2006-02-01
38 schema:description Genome-wide association is a promising approach to identify common genetic variants that predispose to human disease. Because of the high cost of genotyping hundreds of thousands of markers on thousands of subjects, genome-wide association studies often follow a staged design in which a proportion (pi(samples)) of the available samples are genotyped on a large number of markers in stage 1, and a proportion (pi(samples)) of these markers are later followed up by genotyping them on the remaining samples in stage 2. The standard strategy for analyzing such two-stage data is to view stage 2 as a replication study and focus on findings that reach statistical significance when stage 2 data are considered alone. We demonstrate that the alternative strategy of jointly analyzing the data from both stages almost always results in increased power to detect genetic association, despite the need to use more stringent significance levels, even when effect sizes differ between the two stages. We recommend joint analysis for all two-stage genome-wide association studies, especially when a relatively large proportion of the samples are genotyped in stage 1 (pi(samples) >or= 0.30), and a relatively large proportion of markers are selected for follow-up in stage 2 (pi(markers) >or= 0.01).
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N2e8e5d7dcd4b4d9eaddfb282cf0b8034
43 N4bf22439e14a4ccd8da02aafe53c2a15
44 sg:journal.1103138
45 schema:name Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies
46 schema:pagination 209-213
47 schema:productId N0fefbec984eb48c387f69f4ca00410c3
48 N2fc5a4d2fea24937a5dc133c4e14b2a9
49 N5986708ccdcb4c8bad0e7ba51278fa18
50 N80f9acb2b832401185fc202b4f23fd28
51 Nb6236cc1c7f4439a998b073c05e380b5
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009205998
53 https://doi.org/10.1038/ng1706
54 schema:sdDatePublished 2019-04-11T12:23
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ncc5338f2ed344786a751cc6c86567939
57 schema:url http://www.nature.com/articles/ng1706
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0d0d1e851a4f408d93626fe29c3eec0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Genetics, Medical
63 rdf:type schema:DefinedTerm
64 N0fefbec984eb48c387f69f4ca00410c3 schema:name nlm_unique_id
65 schema:value 9216904
66 rdf:type schema:PropertyValue
67 N2e8e5d7dcd4b4d9eaddfb282cf0b8034 schema:volumeNumber 38
68 rdf:type schema:PublicationVolume
69 N2fc5a4d2fea24937a5dc133c4e14b2a9 schema:name dimensions_id
70 schema:value pub.1009205998
71 rdf:type schema:PropertyValue
72 N3c1765b5e82945e2972b6717cca29424 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Genetic Predisposition to Disease
74 rdf:type schema:DefinedTerm
75 N414a51121903475aa1fb450e7089c05f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Gene Frequency
77 rdf:type schema:DefinedTerm
78 N4bf22439e14a4ccd8da02aafe53c2a15 schema:issueNumber 2
79 rdf:type schema:PublicationIssue
80 N5986708ccdcb4c8bad0e7ba51278fa18 schema:name pubmed_id
81 schema:value 16415888
82 rdf:type schema:PropertyValue
83 N6691b85295ac4fbc8fe2dbbff852424a rdf:first sg:person.0754607175.62
84 rdf:rest N8a7f557609d34fe0b097b02f780f2457
85 N7239b44c8e794d37b38241a828bcf52d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Genetic Markers
87 rdf:type schema:DefinedTerm
88 N7cf82d7d0fb1459d8b54cbada225ace6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Genome, Human
90 rdf:type schema:DefinedTerm
91 N80f9acb2b832401185fc202b4f23fd28 schema:name doi
92 schema:value 10.1038/ng1706
93 rdf:type schema:PropertyValue
94 N8a7f557609d34fe0b097b02f780f2457 rdf:first sg:person.0641525362.39
95 rdf:rest Nad827c6fa85a48e8b99549ac31fa9e34
96 Nad827c6fa85a48e8b99549ac31fa9e34 rdf:first sg:person.01061331247.57
97 rdf:rest rdf:nil
98 Nb6236cc1c7f4439a998b073c05e380b5 schema:name readcube_id
99 schema:value 2bdaef6c030cf9683d490aa17c732268dd95524549f3f6040fac8aa19ee8a424
100 rdf:type schema:PropertyValue
101 Nbc0231c3bef94593a089108390195496 rdf:first sg:person.01365042603.69
102 rdf:rest N6691b85295ac4fbc8fe2dbbff852424a
103 Nc6f0b3b0d4a74498bdf890a548a85a0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Genetic Heterogeneity
105 rdf:type schema:DefinedTerm
106 Ncc5338f2ed344786a751cc6c86567939 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nd27713ae19c64cb392499409cdf59a71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name DNA Replication
110 rdf:type schema:DefinedTerm
111 Nd69a2bead00341e4ba3c9ee9baf469a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Alleles
113 rdf:type schema:DefinedTerm
114 Ndc9d0398f7944094a064a11356cb49d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Humans
116 rdf:type schema:DefinedTerm
117 Ndf00098c95a84e61971eb4af8082d9fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Genotype
119 rdf:type schema:DefinedTerm
120 Ne7e0ac1b1d8b442991f76f4979b4ac45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Case-Control Studies
122 rdf:type schema:DefinedTerm
123 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
124 schema:name Biological Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
127 schema:name Genetics
128 rdf:type schema:DefinedTerm
129 sg:journal.1103138 schema:issn 1061-4036
130 1546-1718
131 schema:name Nature Genetics
132 rdf:type schema:Periodical
133 sg:person.01061331247.57 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
134 schema:familyName Boehnke
135 schema:givenName Michael
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061331247.57
137 rdf:type schema:Person
138 sg:person.01365042603.69 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
139 schema:familyName Skol
140 schema:givenName Andrew D
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365042603.69
142 rdf:type schema:Person
143 sg:person.0641525362.39 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
144 schema:familyName Abecasis
145 schema:givenName Gonçalo R
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641525362.39
147 rdf:type schema:Person
148 sg:person.0754607175.62 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
149 schema:familyName Scott
150 schema:givenName Laura J
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754607175.62
152 rdf:type schema:Person
153 sg:pub.10.1038/35052543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048988403
154 https://doi.org/10.1038/35052543
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/35057149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046153445
157 https://doi.org/10.1038/35057149
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/9642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052869833
160 https://doi.org/10.1038/9642
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature02168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033654326
163 https://doi.org/10.1038/nature02168
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/ng1001-233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017573512
166 https://doi.org/10.1038/ng1001-233
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nrg1521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022754728
169 https://doi.org/10.1038/nrg1521
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/gepi.2001.21.s1.s409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074980888
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/gepi.20047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047378057
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/gepi.20070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020332427
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1006/tpbi.2001.1542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027740393
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1006/tpbi.2001.1543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036561676
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1086/318195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058622329
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1086/381716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058673418
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/bioinformatics/19.2.287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005611482
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/j.0006-341x.2002.00163.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039795735
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1111/j.0006-341x.2004.00207.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018887175
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.1105436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027070431
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.1109557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015347593
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.273.5281.1516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554106
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1159/000071807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001470112
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1159/000083541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047681457
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
202 schema:name Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, Ann Arbor, Michigan 48109-2029, USA.
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...