Efficiency and power in genetic association studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-11

AUTHORS

Paul I W de Bakker, Roman Yelensky, Itsik Pe'er, Stacey B Gabriel, Mark J Daly, David Altshuler

ABSTRACT

We investigated selection and analysis of tag SNPs for genome-wide association studies by specifically examining the relationship between investment in genotyping and statistical power. Do pairwise or multimarker methods maximize efficiency and power? To what extent is power compromised when tags are selected from an incomplete resource such as HapMap? We addressed these questions using genotype data from the HapMap ENCODE project, association studies simulated under a realistic disease model, and empirical correction for multiple hypothesis testing. We demonstrate a haplotype-based tagging method that uniformly outperforms single-marker tests and methods for prioritization that markedly increase tagging efficiency. Examining all observed haplotypes for association, rather than just those that are proxies for known SNPs, increases power to detect rare causal alleles, at the cost of reduced power to detect common causal alleles. Power is robust to the completeness of the reference panel from which tags are selected. These findings have implications for prioritizing tag SNPs and interpreting association studies. More... »

PAGES

1217-1223

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng1669

DOI

http://dx.doi.org/10.1038/ng1669

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042975627

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16244653


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Standards", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.", 
            "Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.", 
            "Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.", 
            "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Bakker", 
        "givenName": "Paul I W", 
        "id": "sg:person.01170271720.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170271720.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard\u2013MIT Division of Health Sciences and Technology", 
          "id": "https://www.grid.ac/institutes/grid.413735.7", 
          "name": [
            "Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.", 
            "Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.", 
            "Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yelensky", 
        "givenName": "Roman", 
        "id": "sg:person.0706047561.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706047561.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.", 
            "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pe'er", 
        "givenName": "Itsik", 
        "id": "sg:person.014337342227.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014337342227.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gabriel", 
        "givenName": "Stacey B", 
        "id": "sg:person.012151177437.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012151177437.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.", 
            "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.", 
            "Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daly", 
        "givenName": "Mark J", 
        "id": "sg:person.011517303117.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.", 
            "Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.", 
            "Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.", 
            "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.", 
            "Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.", 
            "Diabetes Unit, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Altshuler", 
        "givenName": "David", 
        "id": "sg:person.011574434444.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574434444.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1159/000071807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001470112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddh169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001999651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005611482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006640995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010139737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2003.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010284446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2003.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010284446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011042390", 
          "https://doi.org/10.1038/ng1457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011042390", 
          "https://doi.org/10.1038/ng1457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011092335", 
          "https://doi.org/10.1038/nrg1522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011092335", 
          "https://doi.org/10.1038/nrg1522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000073729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014435426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016531472", 
          "https://doi.org/10.1038/ng1488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016531472", 
          "https://doi.org/10.1038/ng1488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017573512", 
          "https://doi.org/10.1038/ng1001-233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017573512", 
          "https://doi.org/10.1038/ng1001-233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017921358", 
          "https://doi.org/10.1038/nature02623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017921358", 
          "https://doi.org/10.1038/nature02623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020335539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000057986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025854344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026787741", 
          "https://doi.org/10.1038/ng1001-229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026787741", 
          "https://doi.org/10.1038/ng1001-229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1105436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027070431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2570004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027950506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033654326", 
          "https://doi.org/10.1038/nature02168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033654326", 
          "https://doi.org/10.1038/nature02168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddg337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039854909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000079246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040961188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3709305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043284437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043768375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1530509100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044620917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/423738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046767556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/338688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048094876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000073202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049566565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050377725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/373966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058668522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/373966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058668522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/376561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058669913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/376561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058669913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/378098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058671154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/378098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058671154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/381000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058673096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/382227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058673724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/383251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058674529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445519"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-11", 
    "datePublishedReg": "2005-11-01", 
    "description": "We investigated selection and analysis of tag SNPs for genome-wide association studies by specifically examining the relationship between investment in genotyping and statistical power. Do pairwise or multimarker methods maximize efficiency and power? To what extent is power compromised when tags are selected from an incomplete resource such as HapMap? We addressed these questions using genotype data from the HapMap ENCODE project, association studies simulated under a realistic disease model, and empirical correction for multiple hypothesis testing. We demonstrate a haplotype-based tagging method that uniformly outperforms single-marker tests and methods for prioritization that markedly increase tagging efficiency. Examining all observed haplotypes for association, rather than just those that are proxies for known SNPs, increases power to detect rare causal alleles, at the cost of reduced power to detect common causal alleles. Power is robust to the completeness of the reference panel from which tags are selected. These findings have implications for prioritizing tag SNPs and interpreting association studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng1669", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Efficiency and power in genetic association studies", 
    "pagination": "1217-1223", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ccb5227fb31d44a35049d3368187c65fc1e1b5f393df3147e4acd197728aa0c5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16244653"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng1669"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042975627"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng1669", 
      "https://app.dimensions.ai/details/publication/pub.1042975627"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130829_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/ng1669"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng1669'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng1669'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng1669'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng1669'


 

This table displays all metadata directly associated to this object as RDF triples.

285 TRIPLES      21 PREDICATES      76 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng1669 schema:about N02621ec9901d4956891c5584bbae8e4a
2 N27b48232cf8d468fa941db4f367725f2
3 N2abe98302e224bf1a00b6f863c671600
4 N36fa3f24e1e54f76a7f70a7ab8c931e0
5 N3cc816976ef549a1ab1656a82fc58aab
6 N4abd3be7a643479e8c26f165af2e4f8a
7 N694cffa0244d47ca97f31dc2e78b355f
8 N74e4556bde6b4d8d9c01350490b36503
9 N7ad2ba9147c947f5ae709c9c6cf57384
10 Na70a0ff18ba741de91e23c966aae172f
11 Naaf9e4eecd094fd9bbab8b0c98682f0b
12 Ne2e742c283194142995387dd19e9b829
13 anzsrc-for:01
14 anzsrc-for:0104
15 schema:author Ncc2774905d4a4850aac641bb70e4fe8f
16 schema:citation sg:pub.10.1038/nature02168
17 sg:pub.10.1038/nature02623
18 sg:pub.10.1038/ng1001-229
19 sg:pub.10.1038/ng1001-233
20 sg:pub.10.1038/ng1457
21 sg:pub.10.1038/ng1488
22 sg:pub.10.1038/nrg1522
23 https://doi.org/10.1002/gepi.20050
24 https://doi.org/10.1002/gepi.20056
25 https://doi.org/10.1016/j.tig.2003.09.006
26 https://doi.org/10.1073/pnas.1530509100
27 https://doi.org/10.1086/338688
28 https://doi.org/10.1086/373966
29 https://doi.org/10.1086/376561
30 https://doi.org/10.1086/378098
31 https://doi.org/10.1086/381000
32 https://doi.org/10.1086/382227
33 https://doi.org/10.1086/383251
34 https://doi.org/10.1086/423738
35 https://doi.org/10.1093/bioinformatics/19.2.287
36 https://doi.org/10.1093/bioinformatics/bth457
37 https://doi.org/10.1093/bioinformatics/bth482
38 https://doi.org/10.1093/bioinformatics/bti201
39 https://doi.org/10.1093/hmg/ddg337
40 https://doi.org/10.1093/hmg/ddh169
41 https://doi.org/10.1101/gr.2570004
42 https://doi.org/10.1101/gr.3709305
43 https://doi.org/10.1126/science.1065573
44 https://doi.org/10.1126/science.1069424
45 https://doi.org/10.1126/science.1105436
46 https://doi.org/10.1159/000057986
47 https://doi.org/10.1159/000071807
48 https://doi.org/10.1159/000073202
49 https://doi.org/10.1159/000073729
50 https://doi.org/10.1159/000079246
51 schema:datePublished 2005-11
52 schema:datePublishedReg 2005-11-01
53 schema:description We investigated selection and analysis of tag SNPs for genome-wide association studies by specifically examining the relationship between investment in genotyping and statistical power. Do pairwise or multimarker methods maximize efficiency and power? To what extent is power compromised when tags are selected from an incomplete resource such as HapMap? We addressed these questions using genotype data from the HapMap ENCODE project, association studies simulated under a realistic disease model, and empirical correction for multiple hypothesis testing. We demonstrate a haplotype-based tagging method that uniformly outperforms single-marker tests and methods for prioritization that markedly increase tagging efficiency. Examining all observed haplotypes for association, rather than just those that are proxies for known SNPs, increases power to detect rare causal alleles, at the cost of reduced power to detect common causal alleles. Power is robust to the completeness of the reference panel from which tags are selected. These findings have implications for prioritizing tag SNPs and interpreting association studies.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N71ac5b44dad44c0e90858c225d1c8c96
58 Ncbe310c51b1a4eb7be990a60421a11f6
59 sg:journal.1103138
60 schema:name Efficiency and power in genetic association studies
61 schema:pagination 1217-1223
62 schema:productId N079b1c6916fb440183fde0e35313da4d
63 N2f6cc2113c9a40b0a771fc00af76dd1b
64 N5a7b0306ead6443380f4bf99a5278273
65 N7b3170ff65f44398b7640a810d27a4b9
66 N9bd80283bf6243f9919631e7a769cdce
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042975627
68 https://doi.org/10.1038/ng1669
69 schema:sdDatePublished 2019-04-11T14:00
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nbcfedaf76ba845eea13f2bdc54c858bf
72 schema:url http://www.nature.com/articles/ng1669
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N02621ec9901d4956891c5584bbae8e4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Computer Simulation
78 rdf:type schema:DefinedTerm
79 N079b1c6916fb440183fde0e35313da4d schema:name nlm_unique_id
80 schema:value 9216904
81 rdf:type schema:PropertyValue
82 N0db9b5320e9c4278afb3613b2c8c8f20 rdf:first sg:person.014337342227.51
83 rdf:rest Ne01fbcee1f1041fb81872b85d38820f1
84 N27b48232cf8d468fa941db4f367725f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Chromosome Mapping
86 rdf:type schema:DefinedTerm
87 N2abe98302e224bf1a00b6f863c671600 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Algorithms
89 rdf:type schema:DefinedTerm
90 N2f6cc2113c9a40b0a771fc00af76dd1b schema:name dimensions_id
91 schema:value pub.1042975627
92 rdf:type schema:PropertyValue
93 N36fa3f24e1e54f76a7f70a7ab8c931e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Humans
95 rdf:type schema:DefinedTerm
96 N3cc816976ef549a1ab1656a82fc58aab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Genetic Markers
98 rdf:type schema:DefinedTerm
99 N41fe7570814a443aab73168dbaf89f86 rdf:first sg:person.011574434444.03
100 rdf:rest rdf:nil
101 N4abd3be7a643479e8c26f165af2e4f8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Reference Standards
103 rdf:type schema:DefinedTerm
104 N5a7b0306ead6443380f4bf99a5278273 schema:name pubmed_id
105 schema:value 16244653
106 rdf:type schema:PropertyValue
107 N694cffa0244d47ca97f31dc2e78b355f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Case-Control Studies
109 rdf:type schema:DefinedTerm
110 N71ac5b44dad44c0e90858c225d1c8c96 schema:issueNumber 11
111 rdf:type schema:PublicationIssue
112 N74e4556bde6b4d8d9c01350490b36503 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Haplotypes
114 rdf:type schema:DefinedTerm
115 N7ad2ba9147c947f5ae709c9c6cf57384 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Polymorphism, Single Nucleotide
117 rdf:type schema:DefinedTerm
118 N7b3170ff65f44398b7640a810d27a4b9 schema:name doi
119 schema:value 10.1038/ng1669
120 rdf:type schema:PropertyValue
121 N7f75c93935534dd082d5d5cdab81b885 rdf:first sg:person.0706047561.10
122 rdf:rest N0db9b5320e9c4278afb3613b2c8c8f20
123 N9bd80283bf6243f9919631e7a769cdce schema:name readcube_id
124 schema:value ccb5227fb31d44a35049d3368187c65fc1e1b5f393df3147e4acd197728aa0c5
125 rdf:type schema:PropertyValue
126 Na70a0ff18ba741de91e23c966aae172f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Genetic Predisposition to Disease
128 rdf:type schema:DefinedTerm
129 Naaf9e4eecd094fd9bbab8b0c98682f0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Linkage Disequilibrium
131 rdf:type schema:DefinedTerm
132 Nbcfedaf76ba845eea13f2bdc54c858bf schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 Nc693d42ad40d4e04afa039de5a6bfcc2 rdf:first sg:person.011517303117.07
135 rdf:rest N41fe7570814a443aab73168dbaf89f86
136 Ncbe310c51b1a4eb7be990a60421a11f6 schema:volumeNumber 37
137 rdf:type schema:PublicationVolume
138 Ncc2774905d4a4850aac641bb70e4fe8f rdf:first sg:person.01170271720.20
139 rdf:rest N7f75c93935534dd082d5d5cdab81b885
140 Ne01fbcee1f1041fb81872b85d38820f1 rdf:first sg:person.012151177437.05
141 rdf:rest Nc693d42ad40d4e04afa039de5a6bfcc2
142 Ne2e742c283194142995387dd19e9b829 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Models, Genetic
144 rdf:type schema:DefinedTerm
145 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
146 schema:name Mathematical Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
149 schema:name Statistics
150 rdf:type schema:DefinedTerm
151 sg:journal.1103138 schema:issn 1061-4036
152 1546-1718
153 schema:name Nature Genetics
154 rdf:type schema:Periodical
155 sg:person.011517303117.07 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
156 schema:familyName Daly
157 schema:givenName Mark J
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07
159 rdf:type schema:Person
160 sg:person.011574434444.03 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
161 schema:familyName Altshuler
162 schema:givenName David
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574434444.03
164 rdf:type schema:Person
165 sg:person.01170271720.20 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
166 schema:familyName de Bakker
167 schema:givenName Paul I W
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170271720.20
169 rdf:type schema:Person
170 sg:person.012151177437.05 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
171 schema:familyName Gabriel
172 schema:givenName Stacey B
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012151177437.05
174 rdf:type schema:Person
175 sg:person.014337342227.51 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
176 schema:familyName Pe'er
177 schema:givenName Itsik
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014337342227.51
179 rdf:type schema:Person
180 sg:person.0706047561.10 schema:affiliation https://www.grid.ac/institutes/grid.413735.7
181 schema:familyName Yelensky
182 schema:givenName Roman
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706047561.10
184 rdf:type schema:Person
185 sg:pub.10.1038/nature02168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033654326
186 https://doi.org/10.1038/nature02168
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature02623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017921358
189 https://doi.org/10.1038/nature02623
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/ng1001-229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026787741
192 https://doi.org/10.1038/ng1001-229
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/ng1001-233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017573512
195 https://doi.org/10.1038/ng1001-233
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/ng1457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011042390
198 https://doi.org/10.1038/ng1457
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/ng1488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016531472
201 https://doi.org/10.1038/ng1488
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nrg1522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011092335
204 https://doi.org/10.1038/nrg1522
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/gepi.20050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043768375
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/gepi.20056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020335539
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.tig.2003.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010284446
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1073/pnas.1530509100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044620917
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1086/338688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048094876
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1086/373966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058668522
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1086/376561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058669913
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1086/378098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058671154
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1086/381000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058673096
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1086/382227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058673724
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1086/383251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058674529
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1086/423738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046767556
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/bioinformatics/19.2.287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005611482
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/bioinformatics/bth457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081196
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/bioinformatics/bth482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006640995
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/bti201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050377725
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/hmg/ddg337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039854909
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/hmg/ddh169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001999651
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1101/gr.2570004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027950506
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1101/gr.3709305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043284437
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1065573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445519
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1069424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010139737
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.1105436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027070431
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1159/000057986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025854344
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1159/000071807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001470112
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1159/000073202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049566565
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1159/000073729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014435426
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1159/000079246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040961188
261 rdf:type schema:CreativeWork
262 https://www.grid.ac/institutes/grid.32224.35 schema:alternateName Massachusetts General Hospital
263 schema:name Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.
264 Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
265 Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
266 Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.
267 Diabetes Unit, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.
268 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
271 schema:name Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.
272 Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
273 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
274 rdf:type schema:Organization
275 https://www.grid.ac/institutes/grid.413735.7 schema:alternateName Harvard–MIT Division of Health Sciences and Technology
276 schema:name Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.
277 Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.
278 Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA.
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.66859.34 schema:alternateName Broad Institute
281 schema:name Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.
282 Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
283 Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN-6818, Boston, Massachusetts 02114-2790, USA.
284 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
285 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...