Gene regulatory network growth by duplication View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-05

AUTHORS

Sarah A Teichmann, M Madan Babu

ABSTRACT

We are beginning to elucidate transcriptional regulatory networks on a large scale and to understand some of the structural principles of these networks, but the evolutionary mechanisms that form these networks are still mostly unknown. Here we investigate the role of gene duplication in network evolution. Gene duplication is the driving force for creating new genes in genomes: at least 50% of prokaryotic genes and over 90% of eukaryotic genes are products of gene duplication. The transcriptional interactions in regulatory networks consist of multiple components, and duplication processes that generate new interactions would need to be more complex. We define possible duplication scenarios and show that they formed the regulatory networks of the prokaryote Escherichia coli and the eukaryote Saccharomyces cerevisiae. Gene duplication has had a key role in network evolution: more than one-third of known regulatory interactions were inherited from the ancestral transcription factor or target gene after duplication, and roughly one-half of the interactions were gained during divergence after duplication. In addition, we conclude that evolution has been incremental, rather than making entire regulatory circuits or motifs by duplication with inheritance of interactions. More... »

PAGES

492-496

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng1340

DOI

http://dx.doi.org/10.1038/ng1340

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013876717

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15107850


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungal Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Duplication", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Promoter Regions, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regulatory Sequences, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. sat@mrc-lmb.cam.ac.uk"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teichmann", 
        "givenName": "Sarah A", 
        "id": "sg:person.01122476621.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122476621.52"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Babu", 
        "givenName": "M Madan", 
        "id": "sg:person.07656026657.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656026657.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1075090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001953109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002786107", 
          "https://doi.org/10.1038/35002131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002786107", 
          "https://doi.org/10.1038/35002131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1067407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004364700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005547506", 
          "https://doi.org/10.1038/ng1181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005547506", 
          "https://doi.org/10.1038/ng1181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000067642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005859143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.5288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006608251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkf544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008062058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(03)00174-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008446096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(03)00174-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008446096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.252535999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009258787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.5080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009686806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954918", 
          "https://doi.org/10.1038/ng881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954918", 
          "https://doi.org/10.1038/ng881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-3-r22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011398857", 
          "https://doi.org/10.1186/gb-2003-4-3-r22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.207502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016096496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017388466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/378140a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023086058", 
          "https://doi.org/10.1038/378140a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024852980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.10.4387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024881706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029173283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80134-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030477247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35014651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033127471", 
          "https://doi.org/10.1038/35014651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35014651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033127471", 
          "https://doi.org/10.1038/35014651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.298.5594.824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033238539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.8.2444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035928070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044154631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.11.1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044762817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(03)00203-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045984776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(03)00203-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045984776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046040073", 
          "https://doi.org/10.1038/ng873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046040073", 
          "https://doi.org/10.1038/ng873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5494.1151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050543187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052503500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021952590200047x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062998179"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-05", 
    "datePublishedReg": "2004-05-01", 
    "description": "We are beginning to elucidate transcriptional regulatory networks on a large scale and to understand some of the structural principles of these networks, but the evolutionary mechanisms that form these networks are still mostly unknown. Here we investigate the role of gene duplication in network evolution. Gene duplication is the driving force for creating new genes in genomes: at least 50% of prokaryotic genes and over 90% of eukaryotic genes are products of gene duplication. The transcriptional interactions in regulatory networks consist of multiple components, and duplication processes that generate new interactions would need to be more complex. We define possible duplication scenarios and show that they formed the regulatory networks of the prokaryote Escherichia coli and the eukaryote Saccharomyces cerevisiae. Gene duplication has had a key role in network evolution: more than one-third of known regulatory interactions were inherited from the ancestral transcription factor or target gene after duplication, and roughly one-half of the interactions were gained during divergence after duplication. In addition, we conclude that evolution has been incremental, rather than making entire regulatory circuits or motifs by duplication with inheritance of interactions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng1340", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Gene regulatory network growth by duplication", 
    "pagination": "492-496", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "421af64d4722cc24ff9e41c6aaf9205c438c2b8221bfe8101f491f8194957a23"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15107850"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng1340"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013876717"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng1340", 
      "https://app.dimensions.ai/details/publication/pub.1013876717"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87088_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/ng/journal/v36/n5/full/ng1340.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng1340'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng1340'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng1340'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng1340'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      72 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng1340 schema:about N14f6f40e57ee4ea89b0114c9faebbb36
2 N1eeda036ed7d4ca9bf2da38c0fbadf39
3 N2bf58234a36b4f1c971d17ab803c8955
4 N433a278d68bb466ca8bd7e51e2896340
5 N4a28a2030e604696aafb3fd4e8a5d97c
6 N4a8c2385e7df4c5b8046b1fd196dd527
7 N58a16fba19954fc9b5590ecb8abf8ec6
8 N744b505ee38447188cc3bf659ff03e40
9 N91ef150022d94c968b4d68da7379c6f0
10 N999d74a0e7394ac695128bd4bf3dea2b
11 Na5d85de977784b6581270201c8bed321
12 Na94bf9f76b894d55893e5a5cbe33c745
13 Nc706022221bf4799b2948aa3992ab1f6
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N8268d7a513c7453da4e0377bbe0e35a2
17 schema:citation sg:pub.10.1038/35002131
18 sg:pub.10.1038/35014651
19 sg:pub.10.1038/378140a0
20 sg:pub.10.1038/ng1181
21 sg:pub.10.1038/ng873
22 sg:pub.10.1038/ng881
23 sg:pub.10.1186/gb-2003-4-3-r22
24 https://doi.org/10.1006/jmbi.2001.4776
25 https://doi.org/10.1006/jmbi.2001.5080
26 https://doi.org/10.1006/jmbi.2001.5288
27 https://doi.org/10.1016/s0022-2836(05)80134-2
28 https://doi.org/10.1016/s0168-9525(03)00174-4
29 https://doi.org/10.1016/s0168-9525(03)00203-8
30 https://doi.org/10.1073/pnas.252535999
31 https://doi.org/10.1073/pnas.85.8.2444
32 https://doi.org/10.1073/pnas.91.10.4387
33 https://doi.org/10.1073/pnas.95.25.14658
34 https://doi.org/10.1093/bioinformatics/18.11.1486
35 https://doi.org/10.1093/nar/29.1.72
36 https://doi.org/10.1093/nar/30.1.268
37 https://doi.org/10.1093/nar/gkf544
38 https://doi.org/10.1093/nar/gkg210
39 https://doi.org/10.1101/gr.207502
40 https://doi.org/10.1103/revmodphys.74.47
41 https://doi.org/10.1126/science.1067407
42 https://doi.org/10.1126/science.1075090
43 https://doi.org/10.1126/science.290.5494.1151
44 https://doi.org/10.1126/science.298.5594.824
45 https://doi.org/10.1142/s021952590200047x
46 https://doi.org/10.1159/000067642
47 schema:datePublished 2004-05
48 schema:datePublishedReg 2004-05-01
49 schema:description We are beginning to elucidate transcriptional regulatory networks on a large scale and to understand some of the structural principles of these networks, but the evolutionary mechanisms that form these networks are still mostly unknown. Here we investigate the role of gene duplication in network evolution. Gene duplication is the driving force for creating new genes in genomes: at least 50% of prokaryotic genes and over 90% of eukaryotic genes are products of gene duplication. The transcriptional interactions in regulatory networks consist of multiple components, and duplication processes that generate new interactions would need to be more complex. We define possible duplication scenarios and show that they formed the regulatory networks of the prokaryote Escherichia coli and the eukaryote Saccharomyces cerevisiae. Gene duplication has had a key role in network evolution: more than one-third of known regulatory interactions were inherited from the ancestral transcription factor or target gene after duplication, and roughly one-half of the interactions were gained during divergence after duplication. In addition, we conclude that evolution has been incremental, rather than making entire regulatory circuits or motifs by duplication with inheritance of interactions.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N4a444f5d23984b82bd5bfebab1243d49
54 N56e3413e9862447094c5d3cfe8b5b600
55 sg:journal.1103138
56 schema:name Gene regulatory network growth by duplication
57 schema:pagination 492-496
58 schema:productId N6490723644d042959cf2697c4737d714
59 Na41c8a120b2d4adcaf0a5f8be1c09348
60 Ne4a7fa623b86426688b03a3ec2a10867
61 Nef189f5046c24f20ba9710ed3e2433ca
62 Nfb0773fc9921403cb59f9d9d0e140883
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013876717
64 https://doi.org/10.1038/ng1340
65 schema:sdDatePublished 2019-04-11T12:22
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N79b5e54323c04ffb8363f01a46baca1e
68 schema:url http://www.nature.com/ng/journal/v36/n5/full/ng1340.html
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N14f6f40e57ee4ea89b0114c9faebbb36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Binding Sites
74 rdf:type schema:DefinedTerm
75 N1eeda036ed7d4ca9bf2da38c0fbadf39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Transcription Factors
77 rdf:type schema:DefinedTerm
78 N2bf58234a36b4f1c971d17ab803c8955 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Saccharomyces cerevisiae
80 rdf:type schema:DefinedTerm
81 N36a71d580eea4f1ab8a068c78850bc7d rdf:first sg:person.07656026657.44
82 rdf:rest rdf:nil
83 N433a278d68bb466ca8bd7e51e2896340 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Fungal Proteins
85 rdf:type schema:DefinedTerm
86 N4a28a2030e604696aafb3fd4e8a5d97c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Gene Expression Regulation, Bacterial
88 rdf:type schema:DefinedTerm
89 N4a444f5d23984b82bd5bfebab1243d49 schema:issueNumber 5
90 rdf:type schema:PublicationIssue
91 N4a8c2385e7df4c5b8046b1fd196dd527 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Evolution, Molecular
93 rdf:type schema:DefinedTerm
94 N56e3413e9862447094c5d3cfe8b5b600 schema:volumeNumber 36
95 rdf:type schema:PublicationVolume
96 N58a16fba19954fc9b5590ecb8abf8ec6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Gene Duplication
98 rdf:type schema:DefinedTerm
99 N6490723644d042959cf2697c4737d714 schema:name nlm_unique_id
100 schema:value 9216904
101 rdf:type schema:PropertyValue
102 N744b505ee38447188cc3bf659ff03e40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Promoter Regions, Genetic
104 rdf:type schema:DefinedTerm
105 N79b5e54323c04ffb8363f01a46baca1e schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N8268d7a513c7453da4e0377bbe0e35a2 rdf:first sg:person.01122476621.52
108 rdf:rest N36a71d580eea4f1ab8a068c78850bc7d
109 N91ef150022d94c968b4d68da7379c6f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Escherichia coli
111 rdf:type schema:DefinedTerm
112 N999d74a0e7394ac695128bd4bf3dea2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Gene Expression Regulation, Fungal
114 rdf:type schema:DefinedTerm
115 Na41c8a120b2d4adcaf0a5f8be1c09348 schema:name readcube_id
116 schema:value 421af64d4722cc24ff9e41c6aaf9205c438c2b8221bfe8101f491f8194957a23
117 rdf:type schema:PropertyValue
118 Na5d85de977784b6581270201c8bed321 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Transcription, Genetic
120 rdf:type schema:DefinedTerm
121 Na94bf9f76b894d55893e5a5cbe33c745 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Regulatory Sequences, Nucleic Acid
123 rdf:type schema:DefinedTerm
124 Nc706022221bf4799b2948aa3992ab1f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Bacterial Proteins
126 rdf:type schema:DefinedTerm
127 Ne4a7fa623b86426688b03a3ec2a10867 schema:name pubmed_id
128 schema:value 15107850
129 rdf:type schema:PropertyValue
130 Nef189f5046c24f20ba9710ed3e2433ca schema:name dimensions_id
131 schema:value pub.1013876717
132 rdf:type schema:PropertyValue
133 Nfb0773fc9921403cb59f9d9d0e140883 schema:name doi
134 schema:value 10.1038/ng1340
135 rdf:type schema:PropertyValue
136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
137 schema:name Biological Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
140 schema:name Genetics
141 rdf:type schema:DefinedTerm
142 sg:journal.1103138 schema:issn 1061-4036
143 1546-1718
144 schema:name Nature Genetics
145 rdf:type schema:Periodical
146 sg:person.01122476621.52 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
147 schema:familyName Teichmann
148 schema:givenName Sarah A
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122476621.52
150 rdf:type schema:Person
151 sg:person.07656026657.44 schema:familyName Babu
152 schema:givenName M Madan
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656026657.44
154 rdf:type schema:Person
155 sg:pub.10.1038/35002131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002786107
156 https://doi.org/10.1038/35002131
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/35014651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033127471
159 https://doi.org/10.1038/35014651
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/378140a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023086058
162 https://doi.org/10.1038/378140a0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ng1181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005547506
165 https://doi.org/10.1038/ng1181
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/ng873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046040073
168 https://doi.org/10.1038/ng873
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/ng881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954918
171 https://doi.org/10.1038/ng881
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/gb-2003-4-3-r22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011398857
174 https://doi.org/10.1186/gb-2003-4-3-r22
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1006/jmbi.2001.4776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017388466
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1006/jmbi.2001.5080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009686806
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1006/jmbi.2001.5288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006608251
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0022-2836(05)80134-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477247
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0168-9525(03)00174-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008446096
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0168-9525(03)00203-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045984776
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.252535999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009258787
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1073/pnas.85.8.2444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035928070
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.91.10.4387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024881706
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.95.25.14658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044154631
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/bioinformatics/18.11.1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044762817
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/nar/29.1.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052503500
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/nar/30.1.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029173283
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/nar/gkf544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008062058
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/nar/gkg210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024852980
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1101/gr.207502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016096496
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.1067407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004364700
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.290.5494.1151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050543187
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.298.5594.824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238539
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1142/s021952590200047x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062998179
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1159/000067642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005859143
221 rdf:type schema:CreativeWork
222 https://www.grid.ac/institutes/grid.42475.30 schema:alternateName MRC Laboratory of Molecular Biology
223 schema:name MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. sat@mrc-lmb.cam.ac.uk
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...