Microarray data normalization and transformation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-12

AUTHORS

John Quackenbush

ABSTRACT

Underlying every microarray experiment is an experimental question that one would like to address. Finding a useful and satisfactory answer relies on careful experimental design and the use of a variety of data-mining tools to explore the relationships between genes or reveal patterns of expression. While other sections of this issue deal with these lofty issues, this review focuses on the much more mundane but indispensable tasks of 'normalizing' data from individual hybridizations to make meaningful comparisons of expression levels, and of 'transforming' them to select genes for further analysis and data mining. More... »

PAGES

496

Journal

TITLE

Nature Genetics

ISSUE

4s

VOLUME

32

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng1032

DOI

http://dx.doi.org/10.1038/ng1032

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006930818

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12454644


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forecasting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA. johnq@tigr.org"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quackenbush", 
        "givenName": "John", 
        "id": "sg:person.01306176727.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306176727.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.98.1.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005356386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.281504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014486858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837407", 
          "https://doi.org/10.1038/ng1031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837407", 
          "https://doi.org/10.1038/ng1031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026029796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.1.334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032205578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038201890", 
          "https://doi.org/10.1038/ng1028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038201890", 
          "https://doi.org/10.1038/ng1028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.6.2907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042350330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.4.e15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045723576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.12.2549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048626178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1979.10481038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270050514945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652701753307485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204908"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-12", 
    "datePublishedReg": "2002-12-01", 
    "description": "Underlying every microarray experiment is an experimental question that one would like to address. Finding a useful and satisfactory answer relies on careful experimental design and the use of a variety of data-mining tools to explore the relationships between genes or reveal patterns of expression. While other sections of this issue deal with these lofty issues, this review focuses on the much more mundane but indispensable tasks of 'normalizing' data from individual hybridizations to make meaningful comparisons of expression levels, and of 'transforming' them to select genes for further analysis and data mining.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng1032", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4s", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Microarray data normalization and transformation", 
    "pagination": "496", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "210406d878ffecafa69ebed773462c80b498220e0bae3efe40b13c684047904f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12454644"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng1032"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006930818"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng1032", 
      "https://app.dimensions.ai/details/publication/pub.1006930818"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29219_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ng1032"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng1032'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng1032'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng1032'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng1032'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      49 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng1032 schema:about N03a10ffe4ed2495fa27880fa4d5aa196
2 N1b835538265f4d7e9f38565d85773bc4
3 N3733e4b8db154d35aaa1e5c922642c23
4 N4166cc3ddb08421ab101bb97d0fea0a0
5 N5634a0f4d34c4a7f869a327bbbd0e44c
6 Na76f18159f5e476e845f29b51a1bde43
7 Nb5ca5d5e1f344d869c1d631edd94cc4b
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N09b248e4cc64492590bc02354f07d0e0
11 schema:citation sg:pub.10.1038/ng1028
12 sg:pub.10.1038/ng1031
13 https://doi.org/10.1073/pnas.95.1.334
14 https://doi.org/10.1073/pnas.95.25.14863
15 https://doi.org/10.1073/pnas.96.6.2907
16 https://doi.org/10.1073/pnas.98.1.31
17 https://doi.org/10.1080/01621459.1979.10481038
18 https://doi.org/10.1089/10665270050514945
19 https://doi.org/10.1089/106652701753307485
20 https://doi.org/10.1093/bioinformatics/18.suppl_1.s96
21 https://doi.org/10.1093/nar/29.12.2549
22 https://doi.org/10.1093/nar/30.4.e15
23 https://doi.org/10.1117/12.281504
24 schema:datePublished 2002-12
25 schema:datePublishedReg 2002-12-01
26 schema:description Underlying every microarray experiment is an experimental question that one would like to address. Finding a useful and satisfactory answer relies on careful experimental design and the use of a variety of data-mining tools to explore the relationships between genes or reveal patterns of expression. While other sections of this issue deal with these lofty issues, this review focuses on the much more mundane but indispensable tasks of 'normalizing' data from individual hybridizations to make meaningful comparisons of expression levels, and of 'transforming' them to select genes for further analysis and data mining.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N513024c94e69412c9f883984b18bf585
31 N9c0213c18a204562a09665e002feb4c1
32 sg:journal.1103138
33 schema:name Microarray data normalization and transformation
34 schema:pagination 496
35 schema:productId N37f9e9a37afa459886f0d4d14e4e0bad
36 N54c5e7f70d0b4d73b1568cc429499655
37 N59ca03d9dba04f6fb7f1a32f107eaca1
38 Naf5185d4de294ca6b73932ba4a9594c2
39 Nf1f6c90ef95047a69e173d29df2096fe
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006930818
41 https://doi.org/10.1038/ng1032
42 schema:sdDatePublished 2019-04-11T11:57
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N18a9ea1243794ad7a4a52fff7648f40f
45 schema:url https://www.nature.com/articles/ng1032
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N03a10ffe4ed2495fa27880fa4d5aa196 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Forecasting
51 rdf:type schema:DefinedTerm
52 N09b248e4cc64492590bc02354f07d0e0 rdf:first sg:person.01306176727.55
53 rdf:rest rdf:nil
54 N18a9ea1243794ad7a4a52fff7648f40f schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N1b835538265f4d7e9f38565d85773bc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Animals
58 rdf:type schema:DefinedTerm
59 N3733e4b8db154d35aaa1e5c922642c23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Research Design
61 rdf:type schema:DefinedTerm
62 N37f9e9a37afa459886f0d4d14e4e0bad schema:name nlm_unique_id
63 schema:value 9216904
64 rdf:type schema:PropertyValue
65 N4166cc3ddb08421ab101bb97d0fea0a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Oligonucleotide Array Sequence Analysis
67 rdf:type schema:DefinedTerm
68 N513024c94e69412c9f883984b18bf585 schema:issueNumber 4s
69 rdf:type schema:PublicationIssue
70 N54c5e7f70d0b4d73b1568cc429499655 schema:name dimensions_id
71 schema:value pub.1006930818
72 rdf:type schema:PropertyValue
73 N5634a0f4d34c4a7f869a327bbbd0e44c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N59ca03d9dba04f6fb7f1a32f107eaca1 schema:name pubmed_id
77 schema:value 12454644
78 rdf:type schema:PropertyValue
79 N9c0213c18a204562a09665e002feb4c1 schema:volumeNumber 32
80 rdf:type schema:PublicationVolume
81 Na76f18159f5e476e845f29b51a1bde43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Gene Expression Profiling
83 rdf:type schema:DefinedTerm
84 Naf5185d4de294ca6b73932ba4a9594c2 schema:name readcube_id
85 schema:value 210406d878ffecafa69ebed773462c80b498220e0bae3efe40b13c684047904f
86 rdf:type schema:PropertyValue
87 Nb5ca5d5e1f344d869c1d631edd94cc4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Data Interpretation, Statistical
89 rdf:type schema:DefinedTerm
90 Nf1f6c90ef95047a69e173d29df2096fe schema:name doi
91 schema:value 10.1038/ng1032
92 rdf:type schema:PropertyValue
93 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
94 schema:name Biological Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
97 schema:name Genetics
98 rdf:type schema:DefinedTerm
99 sg:journal.1103138 schema:issn 1061-4036
100 1546-1718
101 schema:name Nature Genetics
102 rdf:type schema:Periodical
103 sg:person.01306176727.55 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
104 schema:familyName Quackenbush
105 schema:givenName John
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306176727.55
107 rdf:type schema:Person
108 sg:pub.10.1038/ng1028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038201890
109 https://doi.org/10.1038/ng1028
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/ng1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021837407
112 https://doi.org/10.1038/ng1031
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1073/pnas.95.1.334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032205578
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1073/pnas.96.6.2907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042350330
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1073/pnas.98.1.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005356386
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1080/01621459.1979.10481038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302085
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1089/10665270050514945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204846
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1089/106652701753307485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204908
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1093/bioinformatics/18.suppl_1.s96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026029796
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1093/nar/29.12.2549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048626178
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1093/nar/30.4.e15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045723576
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1117/12.281504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014486858
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.469946.0 schema:alternateName J. Craig Venter Institute
137 schema:name The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA. johnq@tigr.org
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...