Genomic mismatch scanning: a new approach to genetic linkage mapping View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-05

AUTHORS

S F Nelson, J H McCusker, M A Sander, Y Kee, P Modrich, P O Brown

ABSTRACT

Genomic mismatch scanning (GMS) is a new method of genetic linkage analysis that does not require conventional polymorphic markers or gel electrophoresis. GMS is ideally suited to affected-relative-pair mapping. DNA fragments from all regions of identity-by-descent between two relatives are isolated based on their ability to form extensive mismatch-free hybrid molecules. The genomic origin of this selected pool of DNA fragments is then mapped in a single hybridization step. Here we demonstrate the practicality of GMS in a model organism, Saccharomyces cerevisiae. GMS is likely to be applicable to other organisms, including humans, and may be of particular value in mapping complex genetic traits. More... »

PAGES

11-18

Journal

TITLE

Nature Genetics

ISSUE

1

VOLUME

4

Author Affiliations

Related Patents

  • Attenuated Microorganisms For The Treatment Of Infection
  • Detection Of Chromosomal Abnormalities Associated With Breast Cancer
  • Chromosome-Specific Staining To Detect Genetic Rearrangements Associated With Chromosome 3 And/Or Chromosome 17
  • Chromosome-Specific Staining To Detect Genetic Rearrangements Associated With Chromosome 3 And/Or Chromosome 17
  • Attenuated Salmonella Sp12 Mutants As Antigen Carriers
  • Methods And Compositions For Chromosome-Specific Staining
  • Allele Frequency Differences Method For Phenotype Cloning
  • Solutions Containing Mismatch Repair System Proteins Mutl And Muts
  • Identification Of Genes
  • Comparative Genomic Hybridization (Cgh)
  • Comparative Genomic Hybridization
  • Methods And Kits For Fractionating A Population Of Dna Molecules Based On The Presence Or Absence Of A Base-Pair Mismatch Utilizing Mismatch Repair Systems
  • Human Obesity Susceptibility Gene And Uses Thereof
  • Methods Of Predicting Predisposition To Or Risk Of Kidney Disease
  • Method Of Analysis And Manipulation Of Dna Utilizing Mismatch Repair Systems
  • Microarrays Of Polypeptides
  • Methods Of Staining Target Chromosomal Dna Employing High Complexity Nucleic Acid Probes
  • Human Obesity Susceptibility Gene And Uses Thereof
  • Methods Of Identification And Isolation Of Polynucleotides Containing Nucleic Acid Differences
  • Identification Of Genes
  • Comparative Genomic Hybridization
  • Compositions For Chromosome-Specific Staining
  • Human Obesity Susceptibility Gene And Uses Thereof
  • Methods For Detection Of A Triplet Repeat Block And A Functional Mismatch Binding Protein In A Biological Fluid Sample
  • Methods And Compositions For Chromosome-Specific Staining
  • Comparative Fluorescence Hybridization To Nucleic Acid Arrays
  • Methods For Reducing The Complexity Of Dna Sequence
  • Comparative Genomic Hybridization (Cgh)
  • Comparative Genomic Hybridization (Cgh)
  • Attenuated Salmonella Sp12 Mutants As Antigen Carriers
  • Human Obesity Susceptibility Gene And Uses Thereof
  • Identification Of Genes
  • Comparative Genomic Hybridization (Cgh)
  • Detection Of Mismatches By Cleavage Of Nucleic Acid Heteroduplexes
  • Identification Of Genes
  • Human Obesity Susceptibility Gene And Uses Thereof
  • Human Obesity Susceptibility Gene And Uses Thereof
  • Detection Of Nucleic Acid Sequence Differences By Comparative Genomic Hybridization
  • Attenuated Salmonella Sp12 Mutants As Antigen Carriers
  • Chromosome-Specific Staining To Detect Genetic Rearrangements Associated With Chromosome 3 And/Or Chromosome 17
  • Method Of Staining Target Interphase Chromosomal Dna
  • Methods Of Analysis And Manipulating Of Dna Utilizing Mismatch Repair Systems
  • Methods Of Analysis And Manipulation Of Dna Utilizing Mismatch Repair Systems
  • Method Of Detecting Genetic Translocations Identified With Chromosomal Abnormalities
  • Comparative Genomic Hybridization (Cgh)
  • Screening Methods Using Microbial Strain Pools
  • Methods Of Biological Dosimetry Employing Chromosome-Specific Staining
  • Identification Of Genes
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ng0593-11

    DOI

    http://dx.doi.org/10.1038/ng0593-11

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006168731

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/8513319


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Fungal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Fungal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exodeoxyribonucleases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Feasibility Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Linkage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetics, Medical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Fungal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Methylation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Methyltransferases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saccharomyces cerevisiae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Site-Specific DNA-Methyltransferase (Adenine-Specific)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Pediatrics, Stanford University Medical Center, California 94305."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nelson", 
            "givenName": "S F", 
            "type": "Person"
          }, 
          {
            "familyName": "McCusker", 
            "givenName": "J H", 
            "type": "Person"
          }, 
          {
            "familyName": "Sander", 
            "givenName": "M A", 
            "type": "Person"
          }, 
          {
            "familyName": "Kee", 
            "givenName": "Y", 
            "type": "Person"
          }, 
          {
            "familyName": "Modrich", 
            "givenName": "P", 
            "type": "Person"
          }, 
          {
            "familyName": "Brown", 
            "givenName": "P O", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0092-8674(92)90254-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011793275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-2697(83)90418-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012973560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/14.18.7265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013426648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/357038a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014088457", 
              "https://doi.org/10.1038/357038a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(67)90321-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016629365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/yea.320050503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017472789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/yea.320050503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017472789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/14.18.7285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029151061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(84)90153-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029535594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(84)90153-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029535594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0076-6879(91)94014-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037371856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0492-24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042418504", 
              "https://doi.org/10.1038/ng0492-24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.83.14.5057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043865686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/359380a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050152276", 
              "https://doi.org/10.1038/359380a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00293024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050182198", 
              "https://doi.org/10.1007/bf00293024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.85.23.9138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053213537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00643a026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055183784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.1986.051.01.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060405757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1359640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062477300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1439770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062482219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2665076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062549391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.171.12.6473-6481.1989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062717533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077083132", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078626979", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078626981", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078626992", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078996631", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079183246", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079411941", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079416625", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081643579", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-05", 
        "datePublishedReg": "1993-05-01", 
        "description": "Genomic mismatch scanning (GMS) is a new method of genetic linkage analysis that does not require conventional polymorphic markers or gel electrophoresis. GMS is ideally suited to affected-relative-pair mapping. DNA fragments from all regions of identity-by-descent between two relatives are isolated based on their ability to form extensive mismatch-free hybrid molecules. The genomic origin of this selected pool of DNA fragments is then mapped in a single hybridization step. Here we demonstrate the practicality of GMS in a model organism, Saccharomyces cerevisiae. GMS is likely to be applicable to other organisms, including humans, and may be of particular value in mapping complex genetic traits.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/ng0593-11", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1103138", 
            "issn": [
              "1061-4036", 
              "1546-1718"
            ], 
            "name": "Nature Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Genomic mismatch scanning: a new approach to genetic linkage mapping", 
        "pagination": "11-18", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1d628ad5082fd6d885bd2243e17a64e100f58471c539511cad51ae552948996c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "8513319"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9216904"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ng0593-11"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006168731"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ng0593-11", 
          "https://app.dimensions.ai/details/publication/pub.1006168731"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000434.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/ng0593-11"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng0593-11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng0593-11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng0593-11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng0593-11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    251 TRIPLES      21 PREDICATES      77 URIs      40 LITERALS      28 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ng0593-11 schema:about N12f57384c73c4c579269a656b38aec6c
    2 N3b7a2a66d39c43c3ba3783e9c9544161
    3 N5e822d1b7f2a443ca39e9ab0e76c089a
    4 N602c932d64004c08907edf6d2cfb969e
    5 N71011f7f64b147fd9d79037ee438787a
    6 N76cf87d892024c08a607188c70fde8a4
    7 N7afbd0e5a78c4058af0ee8b0e42045f3
    8 Na38627b37f2f49f88843fe25c241b616
    9 Na55dbbc69d344df8801b2003e073beb7
    10 Na62005c017a84650bf8f9bb6f514ae71
    11 Na9867d83e5564be6beb17327438d6229
    12 Na9a7f2d27b084de78ea41cf40ad853d9
    13 Nc1d8b41553b740449c744ec6e1dd4a54
    14 Nc40f231fe9d544dd9e880a34df71b8eb
    15 Nc7e296ad4b1e475db6409794af7dacf7
    16 Ncc970e7c81f44d159a12873923b65fd7
    17 Nd81325a2880b4da19bab0f08cd4189c6
    18 Ne104c3c10c384964818f6ef2103d1e7a
    19 Ne147f4b429a4451494ee5f94c2627715
    20 anzsrc-for:06
    21 anzsrc-for:0604
    22 schema:author N7e2279c1b87c4414a0021f3b43beb538
    23 schema:citation sg:pub.10.1007/bf00293024
    24 sg:pub.10.1038/357038a0
    25 sg:pub.10.1038/359380a0
    26 sg:pub.10.1038/ng0492-24
    27 https://app.dimensions.ai/details/publication/pub.1077083132
    28 https://app.dimensions.ai/details/publication/pub.1078626979
    29 https://app.dimensions.ai/details/publication/pub.1078626981
    30 https://app.dimensions.ai/details/publication/pub.1078626992
    31 https://app.dimensions.ai/details/publication/pub.1078996631
    32 https://app.dimensions.ai/details/publication/pub.1079183246
    33 https://app.dimensions.ai/details/publication/pub.1079411941
    34 https://app.dimensions.ai/details/publication/pub.1079416625
    35 https://app.dimensions.ai/details/publication/pub.1081643579
    36 https://doi.org/10.1002/yea.320050503
    37 https://doi.org/10.1016/0003-2697(83)90418-9
    38 https://doi.org/10.1016/0022-2836(67)90321-x
    39 https://doi.org/10.1016/0076-6879(91)94014-4
    40 https://doi.org/10.1016/0092-8674(92)90254-a
    41 https://doi.org/10.1016/0378-1119(84)90153-7
    42 https://doi.org/10.1021/bi00643a026
    43 https://doi.org/10.1073/pnas.83.14.5057
    44 https://doi.org/10.1073/pnas.85.23.9138
    45 https://doi.org/10.1093/nar/14.18.7265
    46 https://doi.org/10.1093/nar/14.18.7285
    47 https://doi.org/10.1101/sqb.1986.051.01.007
    48 https://doi.org/10.1126/science.1359640
    49 https://doi.org/10.1126/science.1439770
    50 https://doi.org/10.1126/science.2665076
    51 https://doi.org/10.1128/jb.171.12.6473-6481.1989
    52 schema:datePublished 1993-05
    53 schema:datePublishedReg 1993-05-01
    54 schema:description Genomic mismatch scanning (GMS) is a new method of genetic linkage analysis that does not require conventional polymorphic markers or gel electrophoresis. GMS is ideally suited to affected-relative-pair mapping. DNA fragments from all regions of identity-by-descent between two relatives are isolated based on their ability to form extensive mismatch-free hybrid molecules. The genomic origin of this selected pool of DNA fragments is then mapped in a single hybridization step. Here we demonstrate the practicality of GMS in a model organism, Saccharomyces cerevisiae. GMS is likely to be applicable to other organisms, including humans, and may be of particular value in mapping complex genetic traits.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree false
    58 schema:isPartOf N1f47ebbc9af0462f86bea766990f4601
    59 Nf583bdc67df0483c98d34cd31f1c4557
    60 sg:journal.1103138
    61 schema:name Genomic mismatch scanning: a new approach to genetic linkage mapping
    62 schema:pagination 11-18
    63 schema:productId N07689048708b4c18a53e061122b3fe51
    64 N08b988cbe04e4f8dad67b6d888cc2f93
    65 N573dc41bb97846d19e7dfbe0869c2af6
    66 Naa7e6191ace84c2f86cf89bf1d18028c
    67 Ne8c3ef4486fc400cb2ca37ba2c60b9b4
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006168731
    69 https://doi.org/10.1038/ng0593-11
    70 schema:sdDatePublished 2019-04-10T14:48
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher Ndeab3b5c367e43f087cb72c32fa7a3ce
    73 schema:url http://www.nature.com/articles/ng0593-11
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N07689048708b4c18a53e061122b3fe51 schema:name pubmed_id
    78 schema:value 8513319
    79 rdf:type schema:PropertyValue
    80 N08b988cbe04e4f8dad67b6d888cc2f93 schema:name dimensions_id
    81 schema:value pub.1006168731
    82 rdf:type schema:PropertyValue
    83 N12f57384c73c4c579269a656b38aec6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Nucleic Acid Hybridization
    85 rdf:type schema:DefinedTerm
    86 N1efeeb1f253c4acd8a447c3cfb5daa29 rdf:first N840b9890ba744b478755ccdca72c3360
    87 rdf:rest Ne64d999f44944e4bab5780ba8a1084bf
    88 N1f47ebbc9af0462f86bea766990f4601 schema:volumeNumber 4
    89 rdf:type schema:PublicationVolume
    90 N357ed8fdfd80437ca848089a97bba778 schema:familyName Brown
    91 schema:givenName P O
    92 rdf:type schema:Person
    93 N3b7a2a66d39c43c3ba3783e9c9544161 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Chromosomes, Human
    95 rdf:type schema:DefinedTerm
    96 N547c88a925744105a4291cf0f8e69b9c rdf:first Ndb8c2fcfe9d74485930f8f57d54c59d4
    97 rdf:rest Na02b0b7b29914400aab2a7cc4c9a40e6
    98 N54a4c7c2b6d34b40848b1125715da988 rdf:first N357ed8fdfd80437ca848089a97bba778
    99 rdf:rest rdf:nil
    100 N573dc41bb97846d19e7dfbe0869c2af6 schema:name doi
    101 schema:value 10.1038/ng0593-11
    102 rdf:type schema:PropertyValue
    103 N5e822d1b7f2a443ca39e9ab0e76c089a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Methylation
    105 rdf:type schema:DefinedTerm
    106 N602c932d64004c08907edf6d2cfb969e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Genetics, Medical
    108 rdf:type schema:DefinedTerm
    109 N71011f7f64b147fd9d79037ee438787a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Saccharomyces cerevisiae
    111 rdf:type schema:DefinedTerm
    112 N76cf87d892024c08a607188c70fde8a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Genome, Fungal
    114 rdf:type schema:DefinedTerm
    115 N7afbd0e5a78c4058af0ee8b0e42045f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Methyltransferases
    117 rdf:type schema:DefinedTerm
    118 N7e2279c1b87c4414a0021f3b43beb538 rdf:first Ncabca28cb9994156952e7454c4e5a052
    119 rdf:rest N547c88a925744105a4291cf0f8e69b9c
    120 N840b9890ba744b478755ccdca72c3360 schema:familyName Kee
    121 schema:givenName Y
    122 rdf:type schema:Person
    123 Na02b0b7b29914400aab2a7cc4c9a40e6 rdf:first Nd80bba7bf0e946449862dcc73ed540ea
    124 rdf:rest N1efeeb1f253c4acd8a447c3cfb5daa29
    125 Na38627b37f2f49f88843fe25c241b616 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Sensitivity and Specificity
    127 rdf:type schema:DefinedTerm
    128 Na55dbbc69d344df8801b2003e073beb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Exodeoxyribonucleases
    130 rdf:type schema:DefinedTerm
    131 Na62005c017a84650bf8f9bb6f514ae71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Genetic Linkage
    133 rdf:type schema:DefinedTerm
    134 Na9867d83e5564be6beb17327438d6229 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Genome
    136 rdf:type schema:DefinedTerm
    137 Na9a7f2d27b084de78ea41cf40ad853d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Chromosomes, Fungal
    139 rdf:type schema:DefinedTerm
    140 Naa7e6191ace84c2f86cf89bf1d18028c schema:name nlm_unique_id
    141 schema:value 9216904
    142 rdf:type schema:PropertyValue
    143 Nba26f955f26f4b1d8d9ad7a0befdda9e schema:familyName Modrich
    144 schema:givenName P
    145 rdf:type schema:Person
    146 Nc1d8b41553b740449c744ec6e1dd4a54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Humans
    148 rdf:type schema:DefinedTerm
    149 Nc40f231fe9d544dd9e880a34df71b8eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Chromosome Mapping
    151 rdf:type schema:DefinedTerm
    152 Nc7e296ad4b1e475db6409794af7dacf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name DNA, Fungal
    154 rdf:type schema:DefinedTerm
    155 Ncabca28cb9994156952e7454c4e5a052 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    156 schema:familyName Nelson
    157 schema:givenName S F
    158 rdf:type schema:Person
    159 Ncc970e7c81f44d159a12873923b65fd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Site-Specific DNA-Methyltransferase (Adenine-Specific)
    161 rdf:type schema:DefinedTerm
    162 Nd80bba7bf0e946449862dcc73ed540ea schema:familyName Sander
    163 schema:givenName M A
    164 rdf:type schema:Person
    165 Nd81325a2880b4da19bab0f08cd4189c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Polymorphism, Genetic
    167 rdf:type schema:DefinedTerm
    168 Ndb8c2fcfe9d74485930f8f57d54c59d4 schema:familyName McCusker
    169 schema:givenName J H
    170 rdf:type schema:Person
    171 Ndeab3b5c367e43f087cb72c32fa7a3ce schema:name Springer Nature - SN SciGraph project
    172 rdf:type schema:Organization
    173 Ne104c3c10c384964818f6ef2103d1e7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Feasibility Studies
    175 rdf:type schema:DefinedTerm
    176 Ne147f4b429a4451494ee5f94c2627715 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Genome, Human
    178 rdf:type schema:DefinedTerm
    179 Ne64d999f44944e4bab5780ba8a1084bf rdf:first Nba26f955f26f4b1d8d9ad7a0befdda9e
    180 rdf:rest N54a4c7c2b6d34b40848b1125715da988
    181 Ne8c3ef4486fc400cb2ca37ba2c60b9b4 schema:name readcube_id
    182 schema:value 1d628ad5082fd6d885bd2243e17a64e100f58471c539511cad51ae552948996c
    183 rdf:type schema:PropertyValue
    184 Nf583bdc67df0483c98d34cd31f1c4557 schema:issueNumber 1
    185 rdf:type schema:PublicationIssue
    186 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Biological Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Genetics
    191 rdf:type schema:DefinedTerm
    192 sg:journal.1103138 schema:issn 1061-4036
    193 1546-1718
    194 schema:name Nature Genetics
    195 rdf:type schema:Periodical
    196 sg:pub.10.1007/bf00293024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050182198
    197 https://doi.org/10.1007/bf00293024
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/357038a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014088457
    200 https://doi.org/10.1038/357038a0
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/359380a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050152276
    203 https://doi.org/10.1038/359380a0
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/ng0492-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042418504
    206 https://doi.org/10.1038/ng0492-24
    207 rdf:type schema:CreativeWork
    208 https://app.dimensions.ai/details/publication/pub.1077083132 schema:CreativeWork
    209 https://app.dimensions.ai/details/publication/pub.1078626979 schema:CreativeWork
    210 https://app.dimensions.ai/details/publication/pub.1078626981 schema:CreativeWork
    211 https://app.dimensions.ai/details/publication/pub.1078626992 schema:CreativeWork
    212 https://app.dimensions.ai/details/publication/pub.1078996631 schema:CreativeWork
    213 https://app.dimensions.ai/details/publication/pub.1079183246 schema:CreativeWork
    214 https://app.dimensions.ai/details/publication/pub.1079411941 schema:CreativeWork
    215 https://app.dimensions.ai/details/publication/pub.1079416625 schema:CreativeWork
    216 https://app.dimensions.ai/details/publication/pub.1081643579 schema:CreativeWork
    217 https://doi.org/10.1002/yea.320050503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017472789
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/0003-2697(83)90418-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012973560
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/0022-2836(67)90321-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016629365
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/0076-6879(91)94014-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037371856
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1016/0092-8674(92)90254-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1011793275
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/0378-1119(84)90153-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029535594
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1021/bi00643a026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055183784
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1073/pnas.83.14.5057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043865686
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1073/pnas.85.23.9138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053213537
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1093/nar/14.18.7265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013426648
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1093/nar/14.18.7285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029151061
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1101/sqb.1986.051.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060405757
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1126/science.1359640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062477300
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1126/science.1439770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062482219
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1126/science.2665076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549391
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1128/jb.171.12.6473-6481.1989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062717533
    248 rdf:type schema:CreativeWork
    249 https://www.grid.ac/institutes/grid.240952.8 schema:alternateName Stanford Medicine
    250 schema:name Department of Pediatrics, Stanford University Medical Center, California 94305.
    251 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...