Bayesian inference of ancient human demography from individual genome sequences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-10

AUTHORS

Ilan Gronau, Melissa J Hubisz, Brad Gulko, Charles G Danko, Adam Siepel

ABSTRACT

Whole-genome sequences provide a rich source of information about human evolution. Here we describe an effort to estimate key evolutionary parameters based on the whole-genome sequences of six individuals from diverse human populations. We used a Bayesian, coalescent-based approach to obtain information about ancestral population sizes, divergence times and migration rates from inferred genealogies at many neutrally evolving loci across the genome. We introduce new methods for accommodating gene flow between populations and integrating over possible phasings of diploid genotypes. We also describe a custom pipeline for genotype inference to mitigate biases from heterogeneous sequencing technologies and coverage levels. Our analysis indicates that the San population of southern Africa diverged from other human populations approximately 108-157 thousand years ago, that Eurasians diverged from an ancestral African population 38-64 thousand years ago, and that the effective population size of the ancestors of all modern humans was ∼9,000. More... »

PAGES

1031

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng.937

DOI

http://dx.doi.org/10.1038/ng.937

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048341350

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21926973


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Flow", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Drift", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Validation Studies as Topic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gronau", 
        "givenName": "Ilan", 
        "id": "sg:person.01125510764.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125510764.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hubisz", 
        "givenName": "Melissa J", 
        "id": "sg:person.014020351567.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014020351567.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Graduate Field of Computer Science, Cornell University, Ithaca, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gulko", 
        "givenName": "Brad", 
        "id": "sg:person.01352131754.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352131754.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danko", 
        "givenName": "Charles G", 
        "id": "sg:person.0773424232.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773424232.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siepel", 
        "givenName": "Adam", 
        "id": "sg:person.0734340315.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734340315.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1188021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002597304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1188021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002597304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003397686", 
          "https://doi.org/10.1038/nature04789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003397686", 
          "https://doi.org/10.1038/nature04789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003397686", 
          "https://doi.org/10.1038/nature04789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005808087", 
          "https://doi.org/10.1038/nature08795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005808087", 
          "https://doi.org/10.1038/nature08795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9063-3_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009223925", 
          "https://doi.org/10.1007/978-1-4684-9063-3_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010608717", 
          "https://doi.org/10.1038/nature09534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010608717", 
          "https://doi.org/10.1038/nature09534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012486560", 
          "https://doi.org/10.1038/ng1113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012486560", 
          "https://doi.org/10.1038/ng1113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0507325102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013454322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.125534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013610389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.125534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013610389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016140693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016969839", 
          "https://doi.org/10.1038/nature07484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/375120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020989282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/375120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020989282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.077495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028734946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.077495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028734946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/325031a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029700550", 
          "https://doi.org/10.1038/325031a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msn148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030510658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/505436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030969919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msl209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034631691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0708280104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034701799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.092197.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035862153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036940361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041445247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.10147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044968332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247164", 
          "https://doi.org/10.1038/nature10231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046660436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.078212.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047542880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205294", 
          "https://doi.org/10.1038/nature09710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205294", 
          "https://doi.org/10.1038/nature09710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051134045", 
          "https://doi.org/10.1038/nature06258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925719", 
          "https://doi.org/10.1038/nature07517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053487198", 
          "https://doi.org/10.1038/ng2116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1172257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1172257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074834173", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075216843", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075335901", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-10", 
    "datePublishedReg": "2011-10-01", 
    "description": "Whole-genome sequences provide a rich source of information about human evolution. Here we describe an effort to estimate key evolutionary parameters based on the whole-genome sequences of six individuals from diverse human populations. We used a Bayesian, coalescent-based approach to obtain information about ancestral population sizes, divergence times and migration rates from inferred genealogies at many neutrally evolving loci across the genome. We introduce new methods for accommodating gene flow between populations and integrating over possible phasings of diploid genotypes. We also describe a custom pipeline for genotype inference to mitigate biases from heterogeneous sequencing technologies and coverage levels. Our analysis indicates that the San population of southern Africa diverged from other human populations approximately 108-157 thousand years ago, that Eurasians diverged from an ancestral African population 38-64 thousand years ago, and that the effective population size of the ancestors of all modern humans was \u223c9,000.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng.937", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2684473", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3073906", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "Bayesian inference of ancient human demography from individual genome sequences", 
    "pagination": "1031", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e64a706be117893f4e957096816ef4bb5f94d22402962684ff5416ca6f252718"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21926973"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng.937"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048341350"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng.937", 
      "https://app.dimensions.ai/details/publication/pub.1048341350"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ng.937"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng.937'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng.937'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng.937'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng.937'


 

This table displays all metadata directly associated to this object as RDF triples.

275 TRIPLES      21 PREDICATES      79 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng.937 schema:about N159d120befec4315b02de9137f65098e
2 N2166b8bce6944bd1985c1fa6ce58e14a
3 N29a6a5ed63e7481f80ff0742b9055376
4 N2d9764056ca342cd8d0e1b398067b794
5 N7d3958c197f04800ac98349160c9743c
6 N7ec574d78da84dd3b14a09d78a8f5b00
7 N8889f33d2a8d46b8ba2bffa73ebb7547
8 N8bb670ead3404332b40dfa7f928c58ab
9 N8ecb07029601489fbb657175920a3a35
10 Na77fdd6ae64c4a40a169f874bfba33f0
11 Ndaf97613f2e94d80aa5433649965fb38
12 Nde96a216a5124dd4a67030e87233358f
13 Ne38913bd7be34f85975e7d85804255ee
14 Nf3d4e8de140546e7a6c18d59b1f2b228
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author Nad6a42d9ce834c9cb1ec5f4484b5de5d
18 schema:citation sg:pub.10.1007/978-1-4684-9063-3_14
19 sg:pub.10.1038/325031a0
20 sg:pub.10.1038/nature04789
21 sg:pub.10.1038/nature06258
22 sg:pub.10.1038/nature07484
23 sg:pub.10.1038/nature07517
24 sg:pub.10.1038/nature08795
25 sg:pub.10.1038/nature09534
26 sg:pub.10.1038/nature09710
27 sg:pub.10.1038/nature10231
28 sg:pub.10.1038/ng1113
29 sg:pub.10.1038/ng2116
30 https://app.dimensions.ai/details/publication/pub.1074834173
31 https://app.dimensions.ai/details/publication/pub.1075216843
32 https://app.dimensions.ai/details/publication/pub.1075335901
33 https://doi.org/10.1002/humu.10147
34 https://doi.org/10.1073/pnas.0507325102
35 https://doi.org/10.1073/pnas.0708280104
36 https://doi.org/10.1086/375120
37 https://doi.org/10.1086/505436
38 https://doi.org/10.1093/bioinformatics/btp324
39 https://doi.org/10.1093/bioinformatics/btp352
40 https://doi.org/10.1093/molbev/msl209
41 https://doi.org/10.1093/molbev/msn148
42 https://doi.org/10.1093/molbev/msp096
43 https://doi.org/10.1093/molbev/msp296
44 https://doi.org/10.1101/gr.078212.108
45 https://doi.org/10.1101/gr.092197.109
46 https://doi.org/10.1101/gr.107524.110
47 https://doi.org/10.1126/science.1172257
48 https://doi.org/10.1126/science.1188021
49 https://doi.org/10.1371/journal.pbio.0050254
50 https://doi.org/10.1371/journal.pgen.0030007
51 https://doi.org/10.1371/journal.pgen.1000695
52 https://doi.org/10.1534/genetics.107.077495
53 https://doi.org/10.1534/genetics.110.125534
54 schema:datePublished 2011-10
55 schema:datePublishedReg 2011-10-01
56 schema:description Whole-genome sequences provide a rich source of information about human evolution. Here we describe an effort to estimate key evolutionary parameters based on the whole-genome sequences of six individuals from diverse human populations. We used a Bayesian, coalescent-based approach to obtain information about ancestral population sizes, divergence times and migration rates from inferred genealogies at many neutrally evolving loci across the genome. We introduce new methods for accommodating gene flow between populations and integrating over possible phasings of diploid genotypes. We also describe a custom pipeline for genotype inference to mitigate biases from heterogeneous sequencing technologies and coverage levels. Our analysis indicates that the San population of southern Africa diverged from other human populations approximately 108-157 thousand years ago, that Eurasians diverged from an ancestral African population 38-64 thousand years ago, and that the effective population size of the ancestors of all modern humans was ∼9,000.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N2722713476d542e4ae433956cb7d8b0d
61 Nc901221cf85848658c618aed48f797b5
62 sg:journal.1103138
63 schema:name Bayesian inference of ancient human demography from individual genome sequences
64 schema:pagination 1031
65 schema:productId N1fcfad7dad0e445194769117c4ed597f
66 N61f9a28f393844aaa5980b6f6f10a141
67 N68558aacdcaa4c7d9c14465f85449921
68 Na78aeae6f4ac47598454bb67eb303e48
69 Nb2c0dbab1d9545c18bfbcf91db986d50
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048341350
71 https://doi.org/10.1038/ng.937
72 schema:sdDatePublished 2019-04-11T00:05
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N99cd08387be84471b5078921f9d3a439
75 schema:url https://www.nature.com/articles/ng.937
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N159d120befec4315b02de9137f65098e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Bayes Theorem
81 rdf:type schema:DefinedTerm
82 N1fcfad7dad0e445194769117c4ed597f schema:name readcube_id
83 schema:value e64a706be117893f4e957096816ef4bb5f94d22402962684ff5416ca6f252718
84 rdf:type schema:PropertyValue
85 N2166b8bce6944bd1985c1fa6ce58e14a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Genetics, Population
87 rdf:type schema:DefinedTerm
88 N2722713476d542e4ae433956cb7d8b0d schema:issueNumber 10
89 rdf:type schema:PublicationIssue
90 N29a6a5ed63e7481f80ff0742b9055376 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Genome, Human
92 rdf:type schema:DefinedTerm
93 N2d9764056ca342cd8d0e1b398067b794 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Humans
95 rdf:type schema:DefinedTerm
96 N38b5bb3d46f54fb3bf32a5a6fbcf2e93 rdf:first sg:person.01352131754.15
97 rdf:rest Nd6f8652610eb408480bce77a2b1400a7
98 N6182ad6431b0451eb19958dad242d29d rdf:first sg:person.014020351567.29
99 rdf:rest N38b5bb3d46f54fb3bf32a5a6fbcf2e93
100 N61f9a28f393844aaa5980b6f6f10a141 schema:name nlm_unique_id
101 schema:value 9216904
102 rdf:type schema:PropertyValue
103 N68558aacdcaa4c7d9c14465f85449921 schema:name doi
104 schema:value 10.1038/ng.937
105 rdf:type schema:PropertyValue
106 N6c638acf531f4e7f87c1ae71704bacb7 rdf:first sg:person.0734340315.34
107 rdf:rest rdf:nil
108 N7d3958c197f04800ac98349160c9743c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Population Dynamics
110 rdf:type schema:DefinedTerm
111 N7ec574d78da84dd3b14a09d78a8f5b00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Genetic Variation
113 rdf:type schema:DefinedTerm
114 N8889f33d2a8d46b8ba2bffa73ebb7547 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Models, Genetic
116 rdf:type schema:DefinedTerm
117 N8bb670ead3404332b40dfa7f928c58ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Gene Flow
119 rdf:type schema:DefinedTerm
120 N8ecb07029601489fbb657175920a3a35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Genetic Drift
122 rdf:type schema:DefinedTerm
123 N99cd08387be84471b5078921f9d3a439 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Na77fdd6ae64c4a40a169f874bfba33f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Validation Studies as Topic
127 rdf:type schema:DefinedTerm
128 Na78aeae6f4ac47598454bb67eb303e48 schema:name dimensions_id
129 schema:value pub.1048341350
130 rdf:type schema:PropertyValue
131 Nad6a42d9ce834c9cb1ec5f4484b5de5d rdf:first sg:person.01125510764.60
132 rdf:rest N6182ad6431b0451eb19958dad242d29d
133 Nb2c0dbab1d9545c18bfbcf91db986d50 schema:name pubmed_id
134 schema:value 21926973
135 rdf:type schema:PropertyValue
136 Nc901221cf85848658c618aed48f797b5 schema:volumeNumber 43
137 rdf:type schema:PublicationVolume
138 Nd6f8652610eb408480bce77a2b1400a7 rdf:first sg:person.0773424232.23
139 rdf:rest N6c638acf531f4e7f87c1ae71704bacb7
140 Ndaf97613f2e94d80aa5433649965fb38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Population Density
142 rdf:type schema:DefinedTerm
143 Nde96a216a5124dd4a67030e87233358f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Chromosome Mapping
145 rdf:type schema:DefinedTerm
146 Ne38913bd7be34f85975e7d85804255ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Sequence Alignment
148 rdf:type schema:DefinedTerm
149 Nf3d4e8de140546e7a6c18d59b1f2b228 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Evolution, Molecular
151 rdf:type schema:DefinedTerm
152 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
153 schema:name Biological Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
156 schema:name Genetics
157 rdf:type schema:DefinedTerm
158 sg:grant.2684473 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.937
159 rdf:type schema:MonetaryGrant
160 sg:grant.3073906 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.937
161 rdf:type schema:MonetaryGrant
162 sg:journal.1103138 schema:issn 1061-4036
163 1546-1718
164 schema:name Nature Genetics
165 rdf:type schema:Periodical
166 sg:person.01125510764.60 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
167 schema:familyName Gronau
168 schema:givenName Ilan
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125510764.60
170 rdf:type schema:Person
171 sg:person.01352131754.15 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
172 schema:familyName Gulko
173 schema:givenName Brad
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352131754.15
175 rdf:type schema:Person
176 sg:person.014020351567.29 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
177 schema:familyName Hubisz
178 schema:givenName Melissa J
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014020351567.29
180 rdf:type schema:Person
181 sg:person.0734340315.34 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
182 schema:familyName Siepel
183 schema:givenName Adam
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734340315.34
185 rdf:type schema:Person
186 sg:person.0773424232.23 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
187 schema:familyName Danko
188 schema:givenName Charles G
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773424232.23
190 rdf:type schema:Person
191 sg:pub.10.1007/978-1-4684-9063-3_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009223925
192 https://doi.org/10.1007/978-1-4684-9063-3_14
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/325031a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029700550
195 https://doi.org/10.1038/325031a0
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nature04789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003397686
198 https://doi.org/10.1038/nature04789
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nature06258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051134045
201 https://doi.org/10.1038/nature06258
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nature07484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016969839
204 https://doi.org/10.1038/nature07484
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
207 https://doi.org/10.1038/nature07517
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nature08795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005808087
210 https://doi.org/10.1038/nature08795
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
213 https://doi.org/10.1038/nature09534
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nature09710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050205294
216 https://doi.org/10.1038/nature09710
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nature10231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045247164
219 https://doi.org/10.1038/nature10231
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/ng1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012486560
222 https://doi.org/10.1038/ng1113
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/ng2116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053487198
225 https://doi.org/10.1038/ng2116
226 rdf:type schema:CreativeWork
227 https://app.dimensions.ai/details/publication/pub.1074834173 schema:CreativeWork
228 https://app.dimensions.ai/details/publication/pub.1075216843 schema:CreativeWork
229 https://app.dimensions.ai/details/publication/pub.1075335901 schema:CreativeWork
230 https://doi.org/10.1002/humu.10147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044968332
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.0507325102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013454322
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1073/pnas.0708280104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034701799
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1086/375120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020989282
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1086/505436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030969919
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/molbev/msl209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034631691
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/molbev/msn148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030510658
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/molbev/msp096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036940361
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/molbev/msp296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016140693
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1101/gr.078212.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047542880
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1101/gr.092197.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035862153
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1126/science.1172257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460037
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1126/science.1188021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002597304
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1371/journal.pbio.0050254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942453
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1371/journal.pgen.0030007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041445247
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1371/journal.pgen.1000695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046660436
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1534/genetics.107.077495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028734946
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1534/genetics.110.125534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013610389
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
273 schema:name Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA.
274 Graduate Field of Computer Science, Cornell University, Ithaca, New York, USA.
275 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...