RNA sequencing shows no dosage compensation of the active X-chromosome View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-12

AUTHORS

Yuanyan Xiong, Xiaoshu Chen, Zhidong Chen, Xunzhang Wang, Suhua Shi, Xueqin Wang, Jianzhi Zhang, Xionglei He

ABSTRACT

Mammalian cells from both sexes typically contain one active X chromosome but two sets of autosomes. It has previously been hypothesized that X-linked genes are expressed at twice the level of autosomal genes per active allele to balance the gene dose between the X chromosome and autosomes (termed 'Ohno's hypothesis'). This hypothesis was supported by the observation that microarray-based gene expression levels were indistinguishable between one X chromosome and two autosomes (the X to two autosomes ratio (X:AA) ~1). Here we show that RNA sequencing (RNA-Seq) is more sensitive than microarray and that RNA-Seq data reveal an X:AA ratio of ~0.5 in human and mouse. In Caenorhabditis elegans hermaphrodites, the X:AA ratio reduces progressively from ~1 in larvae to ~0.5 in adults. Proteomic data are consistent with the RNA-Seq results and further suggest the lack of X upregulation at the protein level. Together, our findings reject Ohno’s hypothesis, necessitating a major revision of the current model of dosage compensation in the evolution of sex chromosomes. More... »

PAGES

1043

References to SciGraph publications

  • 2007-03. Dosage compensation is less effective in birds than in mammals in BMC BIOLOGY
  • 2001-03. The human Y chromosome, in the light of evolution in NATURE REVIEWS GENETICS
  • 2006-08. Evolution on the X chromosome: unusual patterns and processes in NATURE REVIEWS GENETICS
  • 2008-11. Alternative isoform regulation in human tissue transcriptomes in NATURE
  • 2008-02. Whole-genome sequencing and variant discovery in C. elegans in NATURE METHODS
  • 2008-07. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2008-11. The diploid genome sequence of an Asian individual in NATURE
  • 2009-12. Estimating accuracy of RNA-Seq and microarrays with proteomics in BMC GENOMICS
  • 2007-09. Recent Progress on the Analysis of Power-law Features in Complex Cellular Networks in CELL BIOCHEMISTRY AND BIOPHYSICS
  • 2007-01. Dosage compensation: the beginning and end of generalization in NATURE REVIEWS GENETICS
  • 2009-01. RNA-Seq: a revolutionary tool for transcriptomics in NATURE REVIEWS GENETICS
  • 2005-03. X-inactivation profile reveals extensive variability in X-linked gene expression in females in NATURE
  • 2006-02. Global analysis of X-chromosome dosage compensation in BMC BIOLOGY
  • 2008-12. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing in NATURE GENETICS
  • 2007-12. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes in BMC BIOLOGY
  • 2006-01. Dosage compensation of the active X chromosome in mammals in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ng.711

    DOI

    http://dx.doi.org/10.1038/ng.711

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005564718

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21102464


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Caenorhabditis elegans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Mammalian", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dosage Compensation, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, X-Linked", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mammals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organ Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "X Chromosome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiong", 
            "givenName": "Yuanyan", 
            "id": "sg:person.01331577122.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331577122.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Xiaoshu", 
            "id": "sg:person.01111767534.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111767534.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Zhidong", 
            "id": "sg:person.01012331537.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012331537.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xunzhang", 
            "id": "sg:person.01312302422.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312302422.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Suhua", 
            "id": "sg:person.01371764357.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371764357.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, China.", 
                "Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xueqin", 
            "id": "sg:person.012272024627.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272024627.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Michigan\u2013Ann Arbor", 
              "id": "https://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jianzhi", 
            "id": "sg:person.01232446600.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232446600.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kunming Institute of Zoology", 
              "id": "https://www.grid.ac/institutes/grid.419010.d", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China.", 
                "State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Xionglei", 
            "id": "sg:person.0653160525.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653160525.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35056058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000619305", 
              "https://doi.org/10.1038/35056058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35056058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000619305", 
              "https://doi.org/10.1038/35056058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001773338", 
              "https://doi.org/10.1038/nmeth.1179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2009.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003845787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1741-7007-5-40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005366514", 
              "https://doi.org/10.1186/1741-7007-5-40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/jbiol30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006105526", 
              "https://doi.org/10.1186/jbiol30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007477207", 
              "https://doi.org/10.1038/nature03479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007477207", 
              "https://doi.org/10.1038/nature03479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012266713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0050326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012872303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0832500100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013333382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.093955.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015714971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016969839", 
              "https://doi.org/10.1038/nature07484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019069767", 
              "https://doi.org/10.1038/nrg1914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019069767", 
              "https://doi.org/10.1038/nrg1914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023508625", 
              "https://doi.org/10.1038/ng1705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023508625", 
              "https://doi.org/10.1038/ng1705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.036871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026344952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.036871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026344952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12013-007-0040-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026805279", 
              "https://doi.org/10.1007/s12013-007-0040-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.2004.69.71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028987408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.2004.69.71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028987408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029002744", 
              "https://doi.org/10.1038/nature07509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.17.9244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030291699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.090936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030293670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.090936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030293670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030687647", 
              "https://doi.org/10.1038/nrg2484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msj054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031550257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033153673", 
              "https://doi.org/10.1186/1471-2164-10-161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2006.01.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033156610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.088112.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036573222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1160342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042163407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2006.01.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042391908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2005.12.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044109724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkn425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044990606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/jbiol53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045824787", 
              "https://doi.org/10.1186/jbiol53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.079558.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045837493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048318512", 
              "https://doi.org/10.1038/nrg2013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048318512", 
              "https://doi.org/10.1038/nrg2013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ibmb.2008.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048647293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050283464", 
              "https://doi.org/10.1038/ng.259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-9822(02)00448-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051005894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.1000048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051360906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.genet.42.110807.091711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052287576"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-12", 
        "datePublishedReg": "2010-12-01", 
        "description": "Mammalian cells from both sexes typically contain one active X chromosome but two sets of autosomes. It has previously been hypothesized that X-linked genes are expressed at twice the level of autosomal genes per active allele to balance the gene dose between the X chromosome and autosomes (termed 'Ohno's hypothesis'). This hypothesis was supported by the observation that microarray-based gene expression levels were indistinguishable between one X chromosome and two autosomes (the X to two autosomes ratio (X:AA) ~1). Here we show that RNA sequencing (RNA-Seq) is more sensitive than microarray and that RNA-Seq data reveal an X:AA ratio of ~0.5 in human and mouse. In Caenorhabditis elegans hermaphrodites, the X:AA ratio reduces progressively from ~1 in larvae to ~0.5 in adults. Proteomic data are consistent with the RNA-Seq results and further suggest the lack of X upregulation at the protein level. Together, our findings reject Ohno\u2019s hypothesis, necessitating a major revision of the current model of dosage compensation in the evolution of sex chromosomes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/ng.711", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4959214", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5012105", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4925096", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1103138", 
            "issn": [
              "1061-4036", 
              "1546-1718"
            ], 
            "name": "Nature Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "42"
          }
        ], 
        "name": "RNA sequencing shows no dosage compensation of the active X-chromosome", 
        "pagination": "1043", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1a834d98984e7616e662cf0069defc7f6ea137e1928e1f697eb4b421ce7c2964"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21102464"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9216904"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ng.711"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005564718"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ng.711", 
          "https://app.dimensions.ai/details/publication/pub.1005564718"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000435.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/ng.711"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng.711'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng.711'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng.711'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng.711'


     

    This table displays all metadata directly associated to this object as RDF triples.

    312 TRIPLES      21 PREDICATES      79 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ng.711 schema:about N3b50a86d3ed6425bb37ec56f9cb13bd5
    2 N44bddb0007dc45918f2f0d8fd0316c01
    3 N510fdd28ba9742db82639d1f50d543f2
    4 N52e094633a1d431e8b7d2c44e0b633c4
    5 N687fe77771e34b83a09dabd137fcdcec
    6 N94db44b2c9204c8a81f17ebc5e021650
    7 Naa1fa330e3eb432e9047f0007d0f0ce5
    8 Nac0bbcedfacd45089b6420402e8927a9
    9 Nb5107d7462c94fe2a9b79b2719177229
    10 Nbb2adefa8f174fccb811317dd5ca647a
    11 Ne6a60337cde74addaa320a06d5af3a31
    12 Nf5524cb86c7b4d7398f63a5fe7bc1dbb
    13 Nfb860fe2b5884ccd979f3799689bf6dc
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author N8b48b6a6fb6d407692030816abca7b9e
    17 schema:citation sg:pub.10.1007/s12013-007-0040-7
    18 sg:pub.10.1038/35056058
    19 sg:pub.10.1038/nature03479
    20 sg:pub.10.1038/nature07484
    21 sg:pub.10.1038/nature07509
    22 sg:pub.10.1038/ng.259
    23 sg:pub.10.1038/ng1705
    24 sg:pub.10.1038/nmeth.1179
    25 sg:pub.10.1038/nmeth.1226
    26 sg:pub.10.1038/nrg1914
    27 sg:pub.10.1038/nrg2013
    28 sg:pub.10.1038/nrg2484
    29 sg:pub.10.1186/1471-2164-10-161
    30 sg:pub.10.1186/1741-7007-5-40
    31 sg:pub.10.1186/jbiol30
    32 sg:pub.10.1186/jbiol53
    33 https://doi.org/10.1016/j.cell.2006.01.044
    34 https://doi.org/10.1016/j.cub.2006.01.066
    35 https://doi.org/10.1016/j.ibmb.2008.12.003
    36 https://doi.org/10.1016/j.tig.2005.12.005
    37 https://doi.org/10.1016/j.tig.2009.03.005
    38 https://doi.org/10.1016/s0960-9822(02)00448-7
    39 https://doi.org/10.1073/pnas.0832500100
    40 https://doi.org/10.1073/pnas.94.17.9244
    41 https://doi.org/10.1093/bioinformatics/btn025
    42 https://doi.org/10.1093/molbev/msj054
    43 https://doi.org/10.1093/nar/gkn425
    44 https://doi.org/10.1101/gr.079558.108
    45 https://doi.org/10.1101/gr.088112.108
    46 https://doi.org/10.1101/gr.093955.109
    47 https://doi.org/10.1101/sqb.2004.69.71
    48 https://doi.org/10.1126/science.1160342
    49 https://doi.org/10.1146/annurev.genet.42.110807.091711
    50 https://doi.org/10.1371/journal.pbio.0050326
    51 https://doi.org/10.1371/journal.pbio.1000048
    52 https://doi.org/10.1534/genetics.104.036871
    53 https://doi.org/10.1534/genetics.108.090936
    54 schema:datePublished 2010-12
    55 schema:datePublishedReg 2010-12-01
    56 schema:description Mammalian cells from both sexes typically contain one active X chromosome but two sets of autosomes. It has previously been hypothesized that X-linked genes are expressed at twice the level of autosomal genes per active allele to balance the gene dose between the X chromosome and autosomes (termed 'Ohno's hypothesis'). This hypothesis was supported by the observation that microarray-based gene expression levels were indistinguishable between one X chromosome and two autosomes (the X to two autosomes ratio (X:AA) ~1). Here we show that RNA sequencing (RNA-Seq) is more sensitive than microarray and that RNA-Seq data reveal an X:AA ratio of ~0.5 in human and mouse. In Caenorhabditis elegans hermaphrodites, the X:AA ratio reduces progressively from ~1 in larvae to ~0.5 in adults. Proteomic data are consistent with the RNA-Seq results and further suggest the lack of X upregulation at the protein level. Together, our findings reject Ohno’s hypothesis, necessitating a major revision of the current model of dosage compensation in the evolution of sex chromosomes.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree false
    60 schema:isPartOf N1ee0b189797642edb8bf21cb5e7dac4d
    61 N20042e47d36e4f6785bfeededfdb1ae9
    62 sg:journal.1103138
    63 schema:name RNA sequencing shows no dosage compensation of the active X-chromosome
    64 schema:pagination 1043
    65 schema:productId N11da01f3a1db403d8c89994402c05a3e
    66 N3ba3727dafdd4436969aa578adcada94
    67 N753f6390be1048dbbf5e28edf7dc1205
    68 Nbc90f97e275e414383560af275096630
    69 Nc0e41289cc5047daa2976fa8a847856d
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005564718
    71 https://doi.org/10.1038/ng.711
    72 schema:sdDatePublished 2019-04-10T21:25
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N01355e283392436a84c316ad38188ff0
    75 schema:url https://www.nature.com/articles/ng.711
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N01355e283392436a84c316ad38188ff0 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 N11da01f3a1db403d8c89994402c05a3e schema:name doi
    82 schema:value 10.1038/ng.711
    83 rdf:type schema:PropertyValue
    84 N1ee0b189797642edb8bf21cb5e7dac4d schema:issueNumber 12
    85 rdf:type schema:PublicationIssue
    86 N20042e47d36e4f6785bfeededfdb1ae9 schema:volumeNumber 42
    87 rdf:type schema:PublicationVolume
    88 N3a69ff6566d54dbf82ceb974481889fc rdf:first sg:person.0653160525.26
    89 rdf:rest rdf:nil
    90 N3b50a86d3ed6425bb37ec56f9cb13bd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Caenorhabditis elegans
    92 rdf:type schema:DefinedTerm
    93 N3ba3727dafdd4436969aa578adcada94 schema:name dimensions_id
    94 schema:value pub.1005564718
    95 rdf:type schema:PropertyValue
    96 N43929d5838ba4786bb2c370dc8119b5f rdf:first sg:person.01371764357.74
    97 rdf:rest Nc067aaa164b84f54948820894e80528b
    98 N44bddb0007dc45918f2f0d8fd0316c01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Genes, X-Linked
    100 rdf:type schema:DefinedTerm
    101 N510fdd28ba9742db82639d1f50d543f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Sequence Analysis, RNA
    103 rdf:type schema:DefinedTerm
    104 N52e094633a1d431e8b7d2c44e0b633c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Mammals
    106 rdf:type schema:DefinedTerm
    107 N687fe77771e34b83a09dabd137fcdcec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Dosage Compensation, Genetic
    109 rdf:type schema:DefinedTerm
    110 N753f6390be1048dbbf5e28edf7dc1205 schema:name pubmed_id
    111 schema:value 21102464
    112 rdf:type schema:PropertyValue
    113 N7d6862f451de48059adef36f45edf32f rdf:first sg:person.01232446600.61
    114 rdf:rest N3a69ff6566d54dbf82ceb974481889fc
    115 N8b48b6a6fb6d407692030816abca7b9e rdf:first sg:person.01331577122.67
    116 rdf:rest Nf1644c958b924064a371986c0e97f07b
    117 N94db44b2c9204c8a81f17ebc5e021650 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Organ Specificity
    119 rdf:type schema:DefinedTerm
    120 Naa1fa330e3eb432e9047f0007d0f0ce5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Gene Expression Profiling
    122 rdf:type schema:DefinedTerm
    123 Nac0bbcedfacd45089b6420402e8927a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Mice
    125 rdf:type schema:DefinedTerm
    126 Nb2dcaee558a84fddbbc46f6b59bb3fe5 rdf:first sg:person.01012331537.31
    127 rdf:rest Nfbe781fa7279451284bc2a22934dda96
    128 Nb5107d7462c94fe2a9b79b2719177229 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Humans
    130 rdf:type schema:DefinedTerm
    131 Nbb2adefa8f174fccb811317dd5ca647a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Animals
    133 rdf:type schema:DefinedTerm
    134 Nbc90f97e275e414383560af275096630 schema:name nlm_unique_id
    135 schema:value 9216904
    136 rdf:type schema:PropertyValue
    137 Nc067aaa164b84f54948820894e80528b rdf:first sg:person.012272024627.39
    138 rdf:rest N7d6862f451de48059adef36f45edf32f
    139 Nc0e41289cc5047daa2976fa8a847856d schema:name readcube_id
    140 schema:value 1a834d98984e7616e662cf0069defc7f6ea137e1928e1f697eb4b421ce7c2964
    141 rdf:type schema:PropertyValue
    142 Ne6a60337cde74addaa320a06d5af3a31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Oligonucleotide Array Sequence Analysis
    144 rdf:type schema:DefinedTerm
    145 Nf1644c958b924064a371986c0e97f07b rdf:first sg:person.01111767534.09
    146 rdf:rest Nb2dcaee558a84fddbbc46f6b59bb3fe5
    147 Nf5524cb86c7b4d7398f63a5fe7bc1dbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Chromosomes, Mammalian
    149 rdf:type schema:DefinedTerm
    150 Nfb860fe2b5884ccd979f3799689bf6dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name X Chromosome
    152 rdf:type schema:DefinedTerm
    153 Nfbe781fa7279451284bc2a22934dda96 rdf:first sg:person.01312302422.84
    154 rdf:rest N43929d5838ba4786bb2c370dc8119b5f
    155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Biological Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Genetics
    160 rdf:type schema:DefinedTerm
    161 sg:grant.4925096 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.711
    162 rdf:type schema:MonetaryGrant
    163 sg:grant.4959214 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.711
    164 rdf:type schema:MonetaryGrant
    165 sg:grant.5012105 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.711
    166 rdf:type schema:MonetaryGrant
    167 sg:journal.1103138 schema:issn 1061-4036
    168 1546-1718
    169 schema:name Nature Genetics
    170 rdf:type schema:Periodical
    171 sg:person.01012331537.31 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    172 schema:familyName Chen
    173 schema:givenName Zhidong
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012331537.31
    175 rdf:type schema:Person
    176 sg:person.01111767534.09 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    177 schema:familyName Chen
    178 schema:givenName Xiaoshu
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111767534.09
    180 rdf:type schema:Person
    181 sg:person.012272024627.39 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    182 schema:familyName Wang
    183 schema:givenName Xueqin
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272024627.39
    185 rdf:type schema:Person
    186 sg:person.01232446600.61 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
    187 schema:familyName Zhang
    188 schema:givenName Jianzhi
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232446600.61
    190 rdf:type schema:Person
    191 sg:person.01312302422.84 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    192 schema:familyName Wang
    193 schema:givenName Xunzhang
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312302422.84
    195 rdf:type schema:Person
    196 sg:person.01331577122.67 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    197 schema:familyName Xiong
    198 schema:givenName Yuanyan
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331577122.67
    200 rdf:type schema:Person
    201 sg:person.01371764357.74 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    202 schema:familyName Shi
    203 schema:givenName Suhua
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371764357.74
    205 rdf:type schema:Person
    206 sg:person.0653160525.26 schema:affiliation https://www.grid.ac/institutes/grid.419010.d
    207 schema:familyName He
    208 schema:givenName Xionglei
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653160525.26
    210 rdf:type schema:Person
    211 sg:pub.10.1007/s12013-007-0040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026805279
    212 https://doi.org/10.1007/s12013-007-0040-7
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/35056058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000619305
    215 https://doi.org/10.1038/35056058
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nature03479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007477207
    218 https://doi.org/10.1038/nature03479
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nature07484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016969839
    221 https://doi.org/10.1038/nature07484
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nature07509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029002744
    224 https://doi.org/10.1038/nature07509
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/ng.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283464
    227 https://doi.org/10.1038/ng.259
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/ng1705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023508625
    230 https://doi.org/10.1038/ng1705
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nmeth.1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001773338
    233 https://doi.org/10.1038/nmeth.1179
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    236 https://doi.org/10.1038/nmeth.1226
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nrg1914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019069767
    239 https://doi.org/10.1038/nrg1914
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nrg2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048318512
    242 https://doi.org/10.1038/nrg2013
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
    245 https://doi.org/10.1038/nrg2484
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/1471-2164-10-161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033153673
    248 https://doi.org/10.1186/1471-2164-10-161
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/1741-7007-5-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005366514
    251 https://doi.org/10.1186/1741-7007-5-40
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/jbiol30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006105526
    254 https://doi.org/10.1186/jbiol30
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1186/jbiol53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045824787
    257 https://doi.org/10.1186/jbiol53
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1016/j.cell.2006.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042391908
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/j.cub.2006.01.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033156610
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/j.ibmb.2008.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048647293
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1016/j.tig.2005.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044109724
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1016/j.tig.2009.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003845787
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/s0960-9822(02)00448-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051005894
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1073/pnas.0832500100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013333382
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1073/pnas.94.17.9244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030291699
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1093/bioinformatics/btn025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012266713
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1093/molbev/msj054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031550257
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1093/nar/gkn425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990606
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1101/gr.079558.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045837493
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1101/gr.088112.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036573222
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1101/gr.093955.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015714971
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1101/sqb.2004.69.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028987408
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1126/science.1160342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042163407
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1146/annurev.genet.42.110807.091711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287576
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1371/journal.pbio.0050326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012872303
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1371/journal.pbio.1000048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051360906
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1534/genetics.104.036871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026344952
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1534/genetics.108.090936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030293670
    300 rdf:type schema:CreativeWork
    301 https://www.grid.ac/institutes/grid.12981.33 schema:alternateName Sun Yat-sen University
    302 schema:name School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, China.
    303 State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China.
    304 Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China.
    305 rdf:type schema:Organization
    306 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
    307 schema:name Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.
    308 rdf:type schema:Organization
    309 https://www.grid.ac/institutes/grid.419010.d schema:alternateName Kunming Institute of Zoology
    310 schema:name State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China.
    311 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
    312 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...