RNA sequencing shows no dosage compensation of the active X-chromosome View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-12

AUTHORS

Yuanyan Xiong, Xiaoshu Chen, Zhidong Chen, Xunzhang Wang, Suhua Shi, Xueqin Wang, Jianzhi Zhang, Xionglei He

ABSTRACT

Mammalian cells from both sexes typically contain one active X chromosome but two sets of autosomes. It has previously been hypothesized that X-linked genes are expressed at twice the level of autosomal genes per active allele to balance the gene dose between the X chromosome and autosomes (termed 'Ohno's hypothesis'). This hypothesis was supported by the observation that microarray-based gene expression levels were indistinguishable between one X chromosome and two autosomes (the X to two autosomes ratio (X:AA) ~1). Here we show that RNA sequencing (RNA-Seq) is more sensitive than microarray and that RNA-Seq data reveal an X:AA ratio of ~0.5 in human and mouse. In Caenorhabditis elegans hermaphrodites, the X:AA ratio reduces progressively from ~1 in larvae to ~0.5 in adults. Proteomic data are consistent with the RNA-Seq results and further suggest the lack of X upregulation at the protein level. Together, our findings reject Ohno’s hypothesis, necessitating a major revision of the current model of dosage compensation in the evolution of sex chromosomes. More... »

PAGES

1043

References to SciGraph publications

  • 2007-03. Dosage compensation is less effective in birds than in mammals in BMC BIOLOGY
  • 2001-03. The human Y chromosome, in the light of evolution in NATURE REVIEWS GENETICS
  • 2006-08. Evolution on the X chromosome: unusual patterns and processes in NATURE REVIEWS GENETICS
  • 2008-11. Alternative isoform regulation in human tissue transcriptomes in NATURE
  • 2008-02. Whole-genome sequencing and variant discovery in C. elegans in NATURE METHODS
  • 2008-07. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2008-11. The diploid genome sequence of an Asian individual in NATURE
  • 2009-12. Estimating accuracy of RNA-Seq and microarrays with proteomics in BMC GENOMICS
  • 2007-09. Recent Progress on the Analysis of Power-law Features in Complex Cellular Networks in CELL BIOCHEMISTRY AND BIOPHYSICS
  • 2007-01. Dosage compensation: the beginning and end of generalization in NATURE REVIEWS GENETICS
  • 2009-01. RNA-Seq: a revolutionary tool for transcriptomics in NATURE REVIEWS GENETICS
  • 2005-03. X-inactivation profile reveals extensive variability in X-linked gene expression in females in NATURE
  • 2006-02. Global analysis of X-chromosome dosage compensation in BMC BIOLOGY
  • 2008-12. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing in NATURE GENETICS
  • 2007-12. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes in BMC BIOLOGY
  • 2006-01. Dosage compensation of the active X chromosome in mammals in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ng.711

    DOI

    http://dx.doi.org/10.1038/ng.711

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005564718

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21102464


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Caenorhabditis elegans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Mammalian", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dosage Compensation, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, X-Linked", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mammals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organ Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "X Chromosome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiong", 
            "givenName": "Yuanyan", 
            "id": "sg:person.01331577122.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331577122.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Xiaoshu", 
            "id": "sg:person.01111767534.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111767534.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Zhidong", 
            "id": "sg:person.01012331537.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012331537.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xunzhang", 
            "id": "sg:person.01312302422.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312302422.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Suhua", 
            "id": "sg:person.01371764357.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371764357.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, China.", 
                "Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xueqin", 
            "id": "sg:person.012272024627.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272024627.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Michigan\u2013Ann Arbor", 
              "id": "https://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jianzhi", 
            "id": "sg:person.01232446600.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232446600.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kunming Institute of Zoology", 
              "id": "https://www.grid.ac/institutes/grid.419010.d", 
              "name": [
                "State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China.", 
                "State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Xionglei", 
            "id": "sg:person.0653160525.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653160525.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35056058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000619305", 
              "https://doi.org/10.1038/35056058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35056058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000619305", 
              "https://doi.org/10.1038/35056058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001773338", 
              "https://doi.org/10.1038/nmeth.1179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2009.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003845787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1741-7007-5-40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005366514", 
              "https://doi.org/10.1186/1741-7007-5-40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/jbiol30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006105526", 
              "https://doi.org/10.1186/jbiol30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007477207", 
              "https://doi.org/10.1038/nature03479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007477207", 
              "https://doi.org/10.1038/nature03479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012266713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0050326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012872303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0832500100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013333382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.093955.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015714971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016969839", 
              "https://doi.org/10.1038/nature07484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019069767", 
              "https://doi.org/10.1038/nrg1914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019069767", 
              "https://doi.org/10.1038/nrg1914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023508625", 
              "https://doi.org/10.1038/ng1705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023508625", 
              "https://doi.org/10.1038/ng1705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.036871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026344952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.036871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026344952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12013-007-0040-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026805279", 
              "https://doi.org/10.1007/s12013-007-0040-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.2004.69.71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028987408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.2004.69.71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028987408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029002744", 
              "https://doi.org/10.1038/nature07509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.17.9244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030291699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.090936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030293670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.090936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030293670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030687647", 
              "https://doi.org/10.1038/nrg2484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msj054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031550257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033153673", 
              "https://doi.org/10.1186/1471-2164-10-161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2006.01.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033156610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.088112.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036573222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1160342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042163407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2006.01.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042391908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2005.12.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044109724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkn425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044990606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/jbiol53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045824787", 
              "https://doi.org/10.1186/jbiol53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.079558.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045837493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048318512", 
              "https://doi.org/10.1038/nrg2013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048318512", 
              "https://doi.org/10.1038/nrg2013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ibmb.2008.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048647293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050283464", 
              "https://doi.org/10.1038/ng.259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-9822(02)00448-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051005894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.1000048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051360906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.genet.42.110807.091711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052287576"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-12", 
        "datePublishedReg": "2010-12-01", 
        "description": "Mammalian cells from both sexes typically contain one active X chromosome but two sets of autosomes. It has previously been hypothesized that X-linked genes are expressed at twice the level of autosomal genes per active allele to balance the gene dose between the X chromosome and autosomes (termed 'Ohno's hypothesis'). This hypothesis was supported by the observation that microarray-based gene expression levels were indistinguishable between one X chromosome and two autosomes (the X to two autosomes ratio (X:AA) ~1). Here we show that RNA sequencing (RNA-Seq) is more sensitive than microarray and that RNA-Seq data reveal an X:AA ratio of ~0.5 in human and mouse. In Caenorhabditis elegans hermaphrodites, the X:AA ratio reduces progressively from ~1 in larvae to ~0.5 in adults. Proteomic data are consistent with the RNA-Seq results and further suggest the lack of X upregulation at the protein level. Together, our findings reject Ohno\u2019s hypothesis, necessitating a major revision of the current model of dosage compensation in the evolution of sex chromosomes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/ng.711", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4959214", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5012105", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4925096", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1103138", 
            "issn": [
              "1061-4036", 
              "1546-1718"
            ], 
            "name": "Nature Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "42"
          }
        ], 
        "name": "RNA sequencing shows no dosage compensation of the active X-chromosome", 
        "pagination": "1043", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1a834d98984e7616e662cf0069defc7f6ea137e1928e1f697eb4b421ce7c2964"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21102464"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9216904"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ng.711"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005564718"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ng.711", 
          "https://app.dimensions.ai/details/publication/pub.1005564718"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000435.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/ng.711"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng.711'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng.711'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng.711'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng.711'


     

    This table displays all metadata directly associated to this object as RDF triples.

    312 TRIPLES      21 PREDICATES      79 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ng.711 schema:about N048ba64ee7a149c2bbed426811e85c77
    2 N06076175de934845ba7f9bbb3e5594cf
    3 N0cf9283ab78142cf9eb4dd5ec5c98a92
    4 N2ace2b5ebb2f482f94984a301fced4ce
    5 N2b9a2563d10a4a22b95f993d4c6aac63
    6 N532400b909a7478aba97c4560e81e73b
    7 N5f9fbf019c5b42579e103d82b32bec31
    8 N837d8edc837441b98308fe2488a602e4
    9 N946cd50e2da545b983fa41e6f1a1cde7
    10 Ncb6f9ebab0bc4d7bb876bddab6ffe126
    11 Nd0eee95ac6524462b096422afc384321
    12 Nd4d9a21076e345a0a614d289f9c2599c
    13 Nebb606c7432e4a56aa0c01ad764fea42
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author Ne483cd34ef3c428a8729e705947bc481
    17 schema:citation sg:pub.10.1007/s12013-007-0040-7
    18 sg:pub.10.1038/35056058
    19 sg:pub.10.1038/nature03479
    20 sg:pub.10.1038/nature07484
    21 sg:pub.10.1038/nature07509
    22 sg:pub.10.1038/ng.259
    23 sg:pub.10.1038/ng1705
    24 sg:pub.10.1038/nmeth.1179
    25 sg:pub.10.1038/nmeth.1226
    26 sg:pub.10.1038/nrg1914
    27 sg:pub.10.1038/nrg2013
    28 sg:pub.10.1038/nrg2484
    29 sg:pub.10.1186/1471-2164-10-161
    30 sg:pub.10.1186/1741-7007-5-40
    31 sg:pub.10.1186/jbiol30
    32 sg:pub.10.1186/jbiol53
    33 https://doi.org/10.1016/j.cell.2006.01.044
    34 https://doi.org/10.1016/j.cub.2006.01.066
    35 https://doi.org/10.1016/j.ibmb.2008.12.003
    36 https://doi.org/10.1016/j.tig.2005.12.005
    37 https://doi.org/10.1016/j.tig.2009.03.005
    38 https://doi.org/10.1016/s0960-9822(02)00448-7
    39 https://doi.org/10.1073/pnas.0832500100
    40 https://doi.org/10.1073/pnas.94.17.9244
    41 https://doi.org/10.1093/bioinformatics/btn025
    42 https://doi.org/10.1093/molbev/msj054
    43 https://doi.org/10.1093/nar/gkn425
    44 https://doi.org/10.1101/gr.079558.108
    45 https://doi.org/10.1101/gr.088112.108
    46 https://doi.org/10.1101/gr.093955.109
    47 https://doi.org/10.1101/sqb.2004.69.71
    48 https://doi.org/10.1126/science.1160342
    49 https://doi.org/10.1146/annurev.genet.42.110807.091711
    50 https://doi.org/10.1371/journal.pbio.0050326
    51 https://doi.org/10.1371/journal.pbio.1000048
    52 https://doi.org/10.1534/genetics.104.036871
    53 https://doi.org/10.1534/genetics.108.090936
    54 schema:datePublished 2010-12
    55 schema:datePublishedReg 2010-12-01
    56 schema:description Mammalian cells from both sexes typically contain one active X chromosome but two sets of autosomes. It has previously been hypothesized that X-linked genes are expressed at twice the level of autosomal genes per active allele to balance the gene dose between the X chromosome and autosomes (termed 'Ohno's hypothesis'). This hypothesis was supported by the observation that microarray-based gene expression levels were indistinguishable between one X chromosome and two autosomes (the X to two autosomes ratio (X:AA) ~1). Here we show that RNA sequencing (RNA-Seq) is more sensitive than microarray and that RNA-Seq data reveal an X:AA ratio of ~0.5 in human and mouse. In Caenorhabditis elegans hermaphrodites, the X:AA ratio reduces progressively from ~1 in larvae to ~0.5 in adults. Proteomic data are consistent with the RNA-Seq results and further suggest the lack of X upregulation at the protein level. Together, our findings reject Ohno’s hypothesis, necessitating a major revision of the current model of dosage compensation in the evolution of sex chromosomes.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree false
    60 schema:isPartOf N0b22a2c21bf2410080e4232c3279607f
    61 N825f7429d10e49dba69d570966fa2635
    62 sg:journal.1103138
    63 schema:name RNA sequencing shows no dosage compensation of the active X-chromosome
    64 schema:pagination 1043
    65 schema:productId N0f4ffacc11c54361b8fa9f5905ff7c0e
    66 N228701bff9a14eed9336c7d29755d861
    67 N37d1dc0bec424e8aa469c004b8140539
    68 N443b63c398d6423e912414f3881057f7
    69 N841a5e9cf04b4d86af45ceb8532833d1
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005564718
    71 https://doi.org/10.1038/ng.711
    72 schema:sdDatePublished 2019-04-10T21:25
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N2fbead39ad82482295a7c3067e64f95f
    75 schema:url https://www.nature.com/articles/ng.711
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N048ba64ee7a149c2bbed426811e85c77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Sequence Analysis, RNA
    81 rdf:type schema:DefinedTerm
    82 N06076175de934845ba7f9bbb3e5594cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Mice
    84 rdf:type schema:DefinedTerm
    85 N0b22a2c21bf2410080e4232c3279607f schema:volumeNumber 42
    86 rdf:type schema:PublicationVolume
    87 N0cf9283ab78142cf9eb4dd5ec5c98a92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Oligonucleotide Array Sequence Analysis
    89 rdf:type schema:DefinedTerm
    90 N0e568ecae2ba45de992d221b7fc4315c rdf:first sg:person.01371764357.74
    91 rdf:rest N1d57328281284756974e2be53b7113aa
    92 N0f4ffacc11c54361b8fa9f5905ff7c0e schema:name nlm_unique_id
    93 schema:value 9216904
    94 rdf:type schema:PropertyValue
    95 N1d57328281284756974e2be53b7113aa rdf:first sg:person.012272024627.39
    96 rdf:rest Nac1bc8da45b842a9a3747a650d21901b
    97 N228701bff9a14eed9336c7d29755d861 schema:name readcube_id
    98 schema:value 1a834d98984e7616e662cf0069defc7f6ea137e1928e1f697eb4b421ce7c2964
    99 rdf:type schema:PropertyValue
    100 N2ace2b5ebb2f482f94984a301fced4ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Gene Expression Profiling
    102 rdf:type schema:DefinedTerm
    103 N2b9a2563d10a4a22b95f993d4c6aac63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Mammals
    105 rdf:type schema:DefinedTerm
    106 N2fbead39ad82482295a7c3067e64f95f schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 N37d1dc0bec424e8aa469c004b8140539 schema:name dimensions_id
    109 schema:value pub.1005564718
    110 rdf:type schema:PropertyValue
    111 N443b63c398d6423e912414f3881057f7 schema:name pubmed_id
    112 schema:value 21102464
    113 rdf:type schema:PropertyValue
    114 N532400b909a7478aba97c4560e81e73b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Humans
    116 rdf:type schema:DefinedTerm
    117 N5f9fbf019c5b42579e103d82b32bec31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name X Chromosome
    119 rdf:type schema:DefinedTerm
    120 N825f7429d10e49dba69d570966fa2635 schema:issueNumber 12
    121 rdf:type schema:PublicationIssue
    122 N837d8edc837441b98308fe2488a602e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Chromosomes, Mammalian
    124 rdf:type schema:DefinedTerm
    125 N841a5e9cf04b4d86af45ceb8532833d1 schema:name doi
    126 schema:value 10.1038/ng.711
    127 rdf:type schema:PropertyValue
    128 N8d9ecf20dbf741afb66cb8376898c472 rdf:first sg:person.01312302422.84
    129 rdf:rest N0e568ecae2ba45de992d221b7fc4315c
    130 N925b4fc2b10c480ea178af417fa26b1c rdf:first sg:person.01111767534.09
    131 rdf:rest Nac3a18eed18046ac8e2a1d67c561f7bd
    132 N946cd50e2da545b983fa41e6f1a1cde7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Organ Specificity
    134 rdf:type schema:DefinedTerm
    135 Nac1bc8da45b842a9a3747a650d21901b rdf:first sg:person.01232446600.61
    136 rdf:rest Nd77bd25b2d1148819269efcc5562a6f6
    137 Nac3a18eed18046ac8e2a1d67c561f7bd rdf:first sg:person.01012331537.31
    138 rdf:rest N8d9ecf20dbf741afb66cb8376898c472
    139 Ncb6f9ebab0bc4d7bb876bddab6ffe126 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Dosage Compensation, Genetic
    141 rdf:type schema:DefinedTerm
    142 Nd0eee95ac6524462b096422afc384321 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Animals
    144 rdf:type schema:DefinedTerm
    145 Nd4d9a21076e345a0a614d289f9c2599c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Genes, X-Linked
    147 rdf:type schema:DefinedTerm
    148 Nd77bd25b2d1148819269efcc5562a6f6 rdf:first sg:person.0653160525.26
    149 rdf:rest rdf:nil
    150 Ne483cd34ef3c428a8729e705947bc481 rdf:first sg:person.01331577122.67
    151 rdf:rest N925b4fc2b10c480ea178af417fa26b1c
    152 Nebb606c7432e4a56aa0c01ad764fea42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Caenorhabditis elegans
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Biological Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Genetics
    160 rdf:type schema:DefinedTerm
    161 sg:grant.4925096 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.711
    162 rdf:type schema:MonetaryGrant
    163 sg:grant.4959214 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.711
    164 rdf:type schema:MonetaryGrant
    165 sg:grant.5012105 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.711
    166 rdf:type schema:MonetaryGrant
    167 sg:journal.1103138 schema:issn 1061-4036
    168 1546-1718
    169 schema:name Nature Genetics
    170 rdf:type schema:Periodical
    171 sg:person.01012331537.31 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    172 schema:familyName Chen
    173 schema:givenName Zhidong
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012331537.31
    175 rdf:type schema:Person
    176 sg:person.01111767534.09 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    177 schema:familyName Chen
    178 schema:givenName Xiaoshu
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111767534.09
    180 rdf:type schema:Person
    181 sg:person.012272024627.39 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    182 schema:familyName Wang
    183 schema:givenName Xueqin
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272024627.39
    185 rdf:type schema:Person
    186 sg:person.01232446600.61 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
    187 schema:familyName Zhang
    188 schema:givenName Jianzhi
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232446600.61
    190 rdf:type schema:Person
    191 sg:person.01312302422.84 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    192 schema:familyName Wang
    193 schema:givenName Xunzhang
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312302422.84
    195 rdf:type schema:Person
    196 sg:person.01331577122.67 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    197 schema:familyName Xiong
    198 schema:givenName Yuanyan
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331577122.67
    200 rdf:type schema:Person
    201 sg:person.01371764357.74 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    202 schema:familyName Shi
    203 schema:givenName Suhua
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371764357.74
    205 rdf:type schema:Person
    206 sg:person.0653160525.26 schema:affiliation https://www.grid.ac/institutes/grid.419010.d
    207 schema:familyName He
    208 schema:givenName Xionglei
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653160525.26
    210 rdf:type schema:Person
    211 sg:pub.10.1007/s12013-007-0040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026805279
    212 https://doi.org/10.1007/s12013-007-0040-7
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/35056058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000619305
    215 https://doi.org/10.1038/35056058
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nature03479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007477207
    218 https://doi.org/10.1038/nature03479
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nature07484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016969839
    221 https://doi.org/10.1038/nature07484
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nature07509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029002744
    224 https://doi.org/10.1038/nature07509
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/ng.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283464
    227 https://doi.org/10.1038/ng.259
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/ng1705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023508625
    230 https://doi.org/10.1038/ng1705
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nmeth.1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001773338
    233 https://doi.org/10.1038/nmeth.1179
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    236 https://doi.org/10.1038/nmeth.1226
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nrg1914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019069767
    239 https://doi.org/10.1038/nrg1914
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nrg2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048318512
    242 https://doi.org/10.1038/nrg2013
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
    245 https://doi.org/10.1038/nrg2484
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/1471-2164-10-161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033153673
    248 https://doi.org/10.1186/1471-2164-10-161
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/1741-7007-5-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005366514
    251 https://doi.org/10.1186/1741-7007-5-40
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/jbiol30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006105526
    254 https://doi.org/10.1186/jbiol30
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1186/jbiol53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045824787
    257 https://doi.org/10.1186/jbiol53
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1016/j.cell.2006.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042391908
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/j.cub.2006.01.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033156610
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/j.ibmb.2008.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048647293
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1016/j.tig.2005.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044109724
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1016/j.tig.2009.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003845787
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/s0960-9822(02)00448-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051005894
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1073/pnas.0832500100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013333382
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1073/pnas.94.17.9244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030291699
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1093/bioinformatics/btn025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012266713
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1093/molbev/msj054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031550257
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1093/nar/gkn425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990606
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1101/gr.079558.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045837493
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1101/gr.088112.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036573222
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1101/gr.093955.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015714971
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1101/sqb.2004.69.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028987408
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1126/science.1160342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042163407
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1146/annurev.genet.42.110807.091711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287576
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1371/journal.pbio.0050326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012872303
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1371/journal.pbio.1000048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051360906
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1534/genetics.104.036871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026344952
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1534/genetics.108.090936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030293670
    300 rdf:type schema:CreativeWork
    301 https://www.grid.ac/institutes/grid.12981.33 schema:alternateName Sun Yat-sen University
    302 schema:name School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, China.
    303 State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China.
    304 Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China.
    305 rdf:type schema:Organization
    306 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
    307 schema:name Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.
    308 rdf:type schema:Organization
    309 https://www.grid.ac/institutes/grid.419010.d schema:alternateName Kunming Institute of Zoology
    310 schema:name State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China.
    311 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
    312 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...