Estimation of effect size distribution from genome-wide association studies and implications for future discoveries View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-07

AUTHORS

Ju-Hyun Park, Sholom Wacholder, Mitchell H Gail, Ulrike Peters, Kevin B Jacobs, Stephen J Chanock, Nilanjan Chatterjee

ABSTRACT

We report a set of tools to estimate the number of susceptibility loci and the distribution of their effect sizes for a trait on the basis of discoveries from existing genome-wide association studies (GWASs). We propose statistical power calculations for future GWASs using estimated distributions of effect sizes. Using reported GWAS findings for height, Crohn's disease and breast, prostate and colorectal (BPC) cancers, we determine that each of these traits is likely to harbor additional loci within the spectrum of low-penetrance common variants. These loci, which can be identified from sufficiently powerful GWASs, together could explain at least 15-20% of the known heritability of these traits. However, for BPC cancers, which have modest familial aggregation, our analysis suggests that risk models based on common variants alone will have modest discriminatory power (63.5% area under curve), even with new discoveries. More... »

PAGES

570

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng.610

DOI

http://dx.doi.org/10.1038/ng.610

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025253932

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20562874


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Height", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crohn Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Penetrance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics, Nonparametric", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju-Hyun", 
        "id": "sg:person.01362623255.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362623255.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wacholder", 
        "givenName": "Sholom", 
        "id": "sg:person.0610464227.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610464227.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gail", 
        "givenName": "Mitchell H", 
        "id": "sg:person.011007425747.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011007425747.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fred Hutchinson Cancer Research Center", 
          "id": "https://www.grid.ac/institutes/grid.270240.3", 
          "name": [
            "Fred Hutchinson Cancer Research Center, Seattle, Washington, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peters", 
        "givenName": "Ulrike", 
        "id": "sg:person.01033315763.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033315763.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Core Genotyping Facility, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Gaithersburg, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacobs", 
        "givenName": "Kevin B", 
        "id": "sg:person.01225120011.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225120011.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA.", 
            "Core Genotyping Facility, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Gaithersburg, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chanock", 
        "givenName": "Stephen J", 
        "id": "sg:person.010403073577.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403073577.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chatterjee", 
        "givenName": "Nilanjan", 
        "id": "sg:person.013651144457.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651144457.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/pros.21002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000238720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pros.21002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000238720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000555917", 
          "https://doi.org/10.1038/ng.353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000555917", 
          "https://doi.org/10.1038/ng.353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0508-489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000802607", 
          "https://doi.org/10.1038/ng0508-489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp0810107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004252172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004622754", 
          "https://doi.org/10.1038/ng.450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004622754", 
          "https://doi.org/10.1038/ng.450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200007133430201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007171562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007759309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009486866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009486866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012504018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0804742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017775798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/340788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018358706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp0806284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019122643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023249798", 
          "https://doi.org/10.1038/ng.125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023921533", 
          "https://doi.org/10.1038/ng.121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025303373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025725602", 
          "https://doi.org/10.1038/ng.262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027055889", 
          "https://doi.org/10.1038/nrg2516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027991306", 
          "https://doi.org/10.1038/nature05887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2008.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032202654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp0808934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034119584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035894615", 
          "https://doi.org/10.1038/ng.175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038826763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041614038", 
          "https://doi.org/10.1038/ng853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041614038", 
          "https://doi.org/10.1038/ng853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djn180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044813602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxn001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044854771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djp130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046333320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047406332", 
          "https://doi.org/10.1038/ng.122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048595961", 
          "https://doi.org/10.1038/ng.90"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048631183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0907727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048643469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051674872", 
          "https://doi.org/10.1038/ng.91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051911808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/383282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058674533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/520678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058792763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2411226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069919922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1998.tb01823.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085730650"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "We report a set of tools to estimate the number of susceptibility loci and the distribution of their effect sizes for a trait on the basis of discoveries from existing genome-wide association studies (GWASs). We propose statistical power calculations for future GWASs using estimated distributions of effect sizes. Using reported GWAS findings for height, Crohn's disease and breast, prostate and colorectal (BPC) cancers, we determine that each of these traits is likely to harbor additional loci within the spectrum of low-penetrance common variants. These loci, which can be identified from sufficiently powerful GWASs, together could explain at least 15-20% of the known heritability of these traits. However, for BPC cancers, which have modest familial aggregation, our analysis suggests that risk models based on common variants alone will have modest discriminatory power (63.5% area under curve), even with new discoveries.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng.610", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Estimation of effect size distribution from genome-wide association studies and implications for future discoveries", 
    "pagination": "570", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "784f4b07db3da76d016a679e81aed23ba8d4fd451e3b2e2d2eab879aa7a67bd6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20562874"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng.610"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025253932"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng.610", 
      "https://app.dimensions.ai/details/publication/pub.1025253932"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ng.610"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng.610'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng.610'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng.610'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng.610'


 

This table displays all metadata directly associated to this object as RDF triples.

308 TRIPLES      21 PREDICATES      83 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng.610 schema:about N0696d0c1715346ba91ee07c65f9438c0
2 N09ee60fc623e4687b5088f4122b156f0
3 N1421f9d691684fb88a90d799a375c54a
4 N20fbe7e8da554d66a16e31446382911c
5 N26f4097af44b454ab4c9e5b7b4469ed9
6 N33c8bdd77189433f8728bbf70b23e094
7 N3db043b7d4fe419980cdedd1a4650491
8 N5590989ef728407d93ce6d0936b96233
9 N5d00dbd9cc0740b898d329bd04d959c1
10 N6335e771d36c4513884977410146f0e5
11 N67508dad5e47431a86f8b3d0a9105694
12 N77392d4bcc4241fea40d787cebb8d7e4
13 N794c07fd3e274062b741d3923fd8e333
14 N7d3eb2c0b62f48fb938cb6b15e20d5ea
15 Nd0817e2d77794e2aada5adfb0178f5e9
16 Nef00c3ae4c684de0b2f5a3cc1e13e46e
17 Nfd5d2af47ba04ccaa969a837d1d9206e
18 anzsrc-for:06
19 anzsrc-for:0604
20 schema:author N992bef2165bb454c85bba7bccf0d9f17
21 schema:citation sg:pub.10.1038/nature05887
22 sg:pub.10.1038/nature08494
23 sg:pub.10.1038/ng.121
24 sg:pub.10.1038/ng.122
25 sg:pub.10.1038/ng.125
26 sg:pub.10.1038/ng.175
27 sg:pub.10.1038/ng.262
28 sg:pub.10.1038/ng.353
29 sg:pub.10.1038/ng.450
30 sg:pub.10.1038/ng.90
31 sg:pub.10.1038/ng.91
32 sg:pub.10.1038/ng0508-489
33 sg:pub.10.1038/ng853
34 sg:pub.10.1038/nrg2516
35 https://doi.org/10.1002/gepi.20437
36 https://doi.org/10.1002/pros.21002
37 https://doi.org/10.1016/j.ajhg.2008.03.002
38 https://doi.org/10.1016/j.ajhg.2008.06.024
39 https://doi.org/10.1016/j.tig.2008.09.006
40 https://doi.org/10.1056/nejm200007133430201
41 https://doi.org/10.1056/nejmoa0804742
42 https://doi.org/10.1056/nejmoa0907727
43 https://doi.org/10.1056/nejmp0806284
44 https://doi.org/10.1056/nejmp0808934
45 https://doi.org/10.1056/nejmp0810107
46 https://doi.org/10.1086/340788
47 https://doi.org/10.1086/383282
48 https://doi.org/10.1086/520678
49 https://doi.org/10.1093/biostatistics/kxn001
50 https://doi.org/10.1093/jnci/djn180
51 https://doi.org/10.1093/jnci/djp130
52 https://doi.org/10.1111/j.1558-5646.1998.tb01823.x
53 https://doi.org/10.1371/journal.pbio.1000294
54 https://doi.org/10.1371/journal.pgen.0030170
55 https://doi.org/10.1371/journal.pgen.1000477
56 https://doi.org/10.1371/journal.pgen.1000481
57 https://doi.org/10.2307/2411226
58 schema:datePublished 2010-07
59 schema:datePublishedReg 2010-07-01
60 schema:description We report a set of tools to estimate the number of susceptibility loci and the distribution of their effect sizes for a trait on the basis of discoveries from existing genome-wide association studies (GWASs). We propose statistical power calculations for future GWASs using estimated distributions of effect sizes. Using reported GWAS findings for height, Crohn's disease and breast, prostate and colorectal (BPC) cancers, we determine that each of these traits is likely to harbor additional loci within the spectrum of low-penetrance common variants. These loci, which can be identified from sufficiently powerful GWASs, together could explain at least 15-20% of the known heritability of these traits. However, for BPC cancers, which have modest familial aggregation, our analysis suggests that risk models based on common variants alone will have modest discriminatory power (63.5% area under curve), even with new discoveries.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N43184808609540238cdf88f7d27b0408
65 N6e4e9985e95d4e9daee61941b825c64e
66 sg:journal.1103138
67 schema:name Estimation of effect size distribution from genome-wide association studies and implications for future discoveries
68 schema:pagination 570
69 schema:productId N2fef925a022b4d12b5c86516558bedc7
70 N33bf6a5ac6be4696b03bf6235ef54f3f
71 N5666c3673f514a04bb4ef470bdc7ca30
72 N7296fa105d024977b85c655841e63190
73 Nf274653f09ca45c6a3a4719d9c4d6f89
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025253932
75 https://doi.org/10.1038/ng.610
76 schema:sdDatePublished 2019-04-11T10:27
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N2ba99b7f25be42b1b5a8f371a36aff04
79 schema:url https://www.nature.com/articles/ng.610
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N0696d0c1715346ba91ee07c65f9438c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Body Height
85 rdf:type schema:DefinedTerm
86 N097c1a4bb5344e8984ce76f971c885b2 rdf:first sg:person.01225120011.16
87 rdf:rest N2fac6c18423e49c38b86a987741e586a
88 N09ee60fc623e4687b5088f4122b156f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Statistics, Nonparametric
90 rdf:type schema:DefinedTerm
91 N1421f9d691684fb88a90d799a375c54a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Penetrance
93 rdf:type schema:DefinedTerm
94 N20fbe7e8da554d66a16e31446382911c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Female
96 rdf:type schema:DefinedTerm
97 N26f4097af44b454ab4c9e5b7b4469ed9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Gene Frequency
99 rdf:type schema:DefinedTerm
100 N2ba99b7f25be42b1b5a8f371a36aff04 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N2fac6c18423e49c38b86a987741e586a rdf:first sg:person.010403073577.20
103 rdf:rest Nc27b76817d384a0f9296c8346367f8c5
104 N2fef925a022b4d12b5c86516558bedc7 schema:name pubmed_id
105 schema:value 20562874
106 rdf:type schema:PropertyValue
107 N33bf6a5ac6be4696b03bf6235ef54f3f schema:name dimensions_id
108 schema:value pub.1025253932
109 rdf:type schema:PropertyValue
110 N33c8bdd77189433f8728bbf70b23e094 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Colorectal Neoplasms
112 rdf:type schema:DefinedTerm
113 N3db043b7d4fe419980cdedd1a4650491 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Genome-Wide Association Study
115 rdf:type schema:DefinedTerm
116 N43184808609540238cdf88f7d27b0408 schema:issueNumber 7
117 rdf:type schema:PublicationIssue
118 N5590989ef728407d93ce6d0936b96233 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Algorithms
120 rdf:type schema:DefinedTerm
121 N5666c3673f514a04bb4ef470bdc7ca30 schema:name readcube_id
122 schema:value 784f4b07db3da76d016a679e81aed23ba8d4fd451e3b2e2d2eab879aa7a67bd6
123 rdf:type schema:PropertyValue
124 N5d00dbd9cc0740b898d329bd04d959c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 N6335e771d36c4513884977410146f0e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Genotype
129 rdf:type schema:DefinedTerm
130 N67508dad5e47431a86f8b3d0a9105694 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Genetic Predisposition to Disease
132 rdf:type schema:DefinedTerm
133 N6e4e9985e95d4e9daee61941b825c64e schema:volumeNumber 42
134 rdf:type schema:PublicationVolume
135 N70e2fc57c05141bcaf01da1a7118dc75 rdf:first sg:person.011007425747.29
136 rdf:rest Nf2188e8e6750484b9f1b7cd0b143ee1b
137 N7296fa105d024977b85c655841e63190 schema:name doi
138 schema:value 10.1038/ng.610
139 rdf:type schema:PropertyValue
140 N77392d4bcc4241fea40d787cebb8d7e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Polymorphism, Single Nucleotide
142 rdf:type schema:DefinedTerm
143 N794c07fd3e274062b741d3923fd8e333 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Male
145 rdf:type schema:DefinedTerm
146 N7d3eb2c0b62f48fb938cb6b15e20d5ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Breast Neoplasms
148 rdf:type schema:DefinedTerm
149 N992bef2165bb454c85bba7bccf0d9f17 rdf:first sg:person.01362623255.10
150 rdf:rest Nf821b923545145508f183d0b5f75cab1
151 Nc27b76817d384a0f9296c8346367f8c5 rdf:first sg:person.013651144457.90
152 rdf:rest rdf:nil
153 Nd0817e2d77794e2aada5adfb0178f5e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Crohn Disease
155 rdf:type schema:DefinedTerm
156 Nef00c3ae4c684de0b2f5a3cc1e13e46e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Prostatic Neoplasms
158 rdf:type schema:DefinedTerm
159 Nf2188e8e6750484b9f1b7cd0b143ee1b rdf:first sg:person.01033315763.32
160 rdf:rest N097c1a4bb5344e8984ce76f971c885b2
161 Nf274653f09ca45c6a3a4719d9c4d6f89 schema:name nlm_unique_id
162 schema:value 9216904
163 rdf:type schema:PropertyValue
164 Nf821b923545145508f183d0b5f75cab1 rdf:first sg:person.0610464227.39
165 rdf:rest N70e2fc57c05141bcaf01da1a7118dc75
166 Nfd5d2af47ba04ccaa969a837d1d9206e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Models, Genetic
168 rdf:type schema:DefinedTerm
169 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
170 schema:name Biological Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
173 schema:name Genetics
174 rdf:type schema:DefinedTerm
175 sg:journal.1103138 schema:issn 1061-4036
176 1546-1718
177 schema:name Nature Genetics
178 rdf:type schema:Periodical
179 sg:person.01033315763.32 schema:affiliation https://www.grid.ac/institutes/grid.270240.3
180 schema:familyName Peters
181 schema:givenName Ulrike
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033315763.32
183 rdf:type schema:Person
184 sg:person.010403073577.20 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
185 schema:familyName Chanock
186 schema:givenName Stephen J
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403073577.20
188 rdf:type schema:Person
189 sg:person.011007425747.29 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
190 schema:familyName Gail
191 schema:givenName Mitchell H
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011007425747.29
193 rdf:type schema:Person
194 sg:person.01225120011.16 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
195 schema:familyName Jacobs
196 schema:givenName Kevin B
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225120011.16
198 rdf:type schema:Person
199 sg:person.01362623255.10 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
200 schema:familyName Park
201 schema:givenName Ju-Hyun
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362623255.10
203 rdf:type schema:Person
204 sg:person.013651144457.90 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
205 schema:familyName Chatterjee
206 schema:givenName Nilanjan
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651144457.90
208 rdf:type schema:Person
209 sg:person.0610464227.39 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
210 schema:familyName Wacholder
211 schema:givenName Sholom
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610464227.39
213 rdf:type schema:Person
214 sg:pub.10.1038/nature05887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027991306
215 https://doi.org/10.1038/nature05887
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nature08494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005147626
218 https://doi.org/10.1038/nature08494
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/ng.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023921533
221 https://doi.org/10.1038/ng.121
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/ng.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047406332
224 https://doi.org/10.1038/ng.122
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/ng.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023249798
227 https://doi.org/10.1038/ng.125
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/ng.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035894615
230 https://doi.org/10.1038/ng.175
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/ng.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025725602
233 https://doi.org/10.1038/ng.262
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/ng.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000555917
236 https://doi.org/10.1038/ng.353
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/ng.450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004622754
239 https://doi.org/10.1038/ng.450
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/ng.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048595961
242 https://doi.org/10.1038/ng.90
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/ng.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051674872
245 https://doi.org/10.1038/ng.91
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/ng0508-489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000802607
248 https://doi.org/10.1038/ng0508-489
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/ng853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041614038
251 https://doi.org/10.1038/ng853
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nrg2516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027055889
254 https://doi.org/10.1038/nrg2516
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1002/gepi.20437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009486866
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1002/pros.21002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000238720
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.ajhg.2008.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012504018
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.ajhg.2008.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038826763
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/j.tig.2008.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032202654
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1056/nejm200007133430201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007171562
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1056/nejmoa0804742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017775798
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1056/nejmoa0907727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048643469
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1056/nejmp0806284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019122643
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1056/nejmp0808934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034119584
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1056/nejmp0810107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004252172
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1086/340788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018358706
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1086/383282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058674533
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1086/520678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058792763
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1093/biostatistics/kxn001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044854771
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1093/jnci/djn180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044813602
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1093/jnci/djp130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046333320
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1111/j.1558-5646.1998.tb01823.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085730650
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1371/journal.pbio.1000294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025303373
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1371/journal.pgen.0030170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007759309
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1371/journal.pgen.1000477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051911808
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1371/journal.pgen.1000481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048631183
299 rdf:type schema:CreativeWork
300 https://doi.org/10.2307/2411226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069919922
301 rdf:type schema:CreativeWork
302 https://www.grid.ac/institutes/grid.270240.3 schema:alternateName Fred Hutchinson Cancer Research Center
303 schema:name Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
304 rdf:type schema:Organization
305 https://www.grid.ac/institutes/grid.48336.3a schema:alternateName National Cancer Institute
306 schema:name Core Genotyping Facility, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Gaithersburg, Maryland, USA.
307 Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA.
308 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...