Estimation of effect size distribution from genome-wide association studies and implications for future discoveries View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-07

AUTHORS

Ju-Hyun Park, Sholom Wacholder, Mitchell H Gail, Ulrike Peters, Kevin B Jacobs, Stephen J Chanock, Nilanjan Chatterjee

ABSTRACT

We report a set of tools to estimate the number of susceptibility loci and the distribution of their effect sizes for a trait on the basis of discoveries from existing genome-wide association studies (GWASs). We propose statistical power calculations for future GWASs using estimated distributions of effect sizes. Using reported GWAS findings for height, Crohn's disease and breast, prostate and colorectal (BPC) cancers, we determine that each of these traits is likely to harbor additional loci within the spectrum of low-penetrance common variants. These loci, which can be identified from sufficiently powerful GWASs, together could explain at least 15-20% of the known heritability of these traits. However, for BPC cancers, which have modest familial aggregation, our analysis suggests that risk models based on common variants alone will have modest discriminatory power (63.5% area under curve), even with new discoveries. More... »

PAGES

570

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng.610

DOI

http://dx.doi.org/10.1038/ng.610

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025253932

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20562874


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Height", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crohn Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Penetrance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics, Nonparametric", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju-Hyun", 
        "id": "sg:person.01362623255.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362623255.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wacholder", 
        "givenName": "Sholom", 
        "id": "sg:person.0610464227.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610464227.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gail", 
        "givenName": "Mitchell H", 
        "id": "sg:person.011007425747.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011007425747.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fred Hutchinson Cancer Research Center", 
          "id": "https://www.grid.ac/institutes/grid.270240.3", 
          "name": [
            "Fred Hutchinson Cancer Research Center, Seattle, Washington, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peters", 
        "givenName": "Ulrike", 
        "id": "sg:person.01033315763.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033315763.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Core Genotyping Facility, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Gaithersburg, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacobs", 
        "givenName": "Kevin B", 
        "id": "sg:person.01225120011.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225120011.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA.", 
            "Core Genotyping Facility, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Gaithersburg, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chanock", 
        "givenName": "Stephen J", 
        "id": "sg:person.010403073577.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403073577.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chatterjee", 
        "givenName": "Nilanjan", 
        "id": "sg:person.013651144457.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651144457.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/pros.21002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000238720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pros.21002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000238720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000555917", 
          "https://doi.org/10.1038/ng.353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000555917", 
          "https://doi.org/10.1038/ng.353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0508-489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000802607", 
          "https://doi.org/10.1038/ng0508-489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp0810107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004252172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004622754", 
          "https://doi.org/10.1038/ng.450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004622754", 
          "https://doi.org/10.1038/ng.450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200007133430201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007171562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007759309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009486866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009486866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012504018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0804742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017775798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/340788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018358706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp0806284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019122643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023249798", 
          "https://doi.org/10.1038/ng.125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023921533", 
          "https://doi.org/10.1038/ng.121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025303373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025725602", 
          "https://doi.org/10.1038/ng.262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027055889", 
          "https://doi.org/10.1038/nrg2516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027991306", 
          "https://doi.org/10.1038/nature05887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2008.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032202654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp0808934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034119584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035894615", 
          "https://doi.org/10.1038/ng.175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038826763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041614038", 
          "https://doi.org/10.1038/ng853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041614038", 
          "https://doi.org/10.1038/ng853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djn180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044813602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxn001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044854771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djp130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046333320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047406332", 
          "https://doi.org/10.1038/ng.122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048595961", 
          "https://doi.org/10.1038/ng.90"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048631183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0907727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048643469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051674872", 
          "https://doi.org/10.1038/ng.91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051911808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/383282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058674533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/520678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058792763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2411226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069919922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1998.tb01823.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085730650"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "We report a set of tools to estimate the number of susceptibility loci and the distribution of their effect sizes for a trait on the basis of discoveries from existing genome-wide association studies (GWASs). We propose statistical power calculations for future GWASs using estimated distributions of effect sizes. Using reported GWAS findings for height, Crohn's disease and breast, prostate and colorectal (BPC) cancers, we determine that each of these traits is likely to harbor additional loci within the spectrum of low-penetrance common variants. These loci, which can be identified from sufficiently powerful GWASs, together could explain at least 15-20% of the known heritability of these traits. However, for BPC cancers, which have modest familial aggregation, our analysis suggests that risk models based on common variants alone will have modest discriminatory power (63.5% area under curve), even with new discoveries.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng.610", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Estimation of effect size distribution from genome-wide association studies and implications for future discoveries", 
    "pagination": "570", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "784f4b07db3da76d016a679e81aed23ba8d4fd451e3b2e2d2eab879aa7a67bd6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20562874"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng.610"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025253932"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng.610", 
      "https://app.dimensions.ai/details/publication/pub.1025253932"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ng.610"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng.610'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng.610'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng.610'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng.610'


 

This table displays all metadata directly associated to this object as RDF triples.

308 TRIPLES      21 PREDICATES      83 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng.610 schema:about N0480d49ff719492cab55c40a952f30c7
2 N1800dfb4739049618957c31fcc60a245
3 N2799bbaca8bb494abf90ad0604df54e5
4 N3960724a235b484d9a3f1ca867992df7
5 N471b50c91a1a4015b8edda07b51f9563
6 N5a4929dec7524b0a84678ca92de642fe
7 N6571b3f7b3644c70a2f751aa29a48fc5
8 N70410f2bb9614212852fc43b7e36795d
9 N70eaec2b7fc9436c855d290a06ac1be7
10 N7662da05e9fe4ebda442da40089aec5e
11 N799f76724fec4dc381660552d19e1988
12 N9836d925cae74b08a98898e8b456f0d2
13 Nafa68d6feb824cbb97b3215b4fd95ba5
14 Nbe4fd9c9009f44c7b6b2fb212d284979
15 Ne9f9cf8f8d324df89565cc146eb2313d
16 Nf310f195c69846a592585759a30bc2d5
17 Nfc1bad53a7084e6da8afbd8a5454b9c3
18 anzsrc-for:06
19 anzsrc-for:0604
20 schema:author N3ed4724ddc704279bd6ef6897edd2984
21 schema:citation sg:pub.10.1038/nature05887
22 sg:pub.10.1038/nature08494
23 sg:pub.10.1038/ng.121
24 sg:pub.10.1038/ng.122
25 sg:pub.10.1038/ng.125
26 sg:pub.10.1038/ng.175
27 sg:pub.10.1038/ng.262
28 sg:pub.10.1038/ng.353
29 sg:pub.10.1038/ng.450
30 sg:pub.10.1038/ng.90
31 sg:pub.10.1038/ng.91
32 sg:pub.10.1038/ng0508-489
33 sg:pub.10.1038/ng853
34 sg:pub.10.1038/nrg2516
35 https://doi.org/10.1002/gepi.20437
36 https://doi.org/10.1002/pros.21002
37 https://doi.org/10.1016/j.ajhg.2008.03.002
38 https://doi.org/10.1016/j.ajhg.2008.06.024
39 https://doi.org/10.1016/j.tig.2008.09.006
40 https://doi.org/10.1056/nejm200007133430201
41 https://doi.org/10.1056/nejmoa0804742
42 https://doi.org/10.1056/nejmoa0907727
43 https://doi.org/10.1056/nejmp0806284
44 https://doi.org/10.1056/nejmp0808934
45 https://doi.org/10.1056/nejmp0810107
46 https://doi.org/10.1086/340788
47 https://doi.org/10.1086/383282
48 https://doi.org/10.1086/520678
49 https://doi.org/10.1093/biostatistics/kxn001
50 https://doi.org/10.1093/jnci/djn180
51 https://doi.org/10.1093/jnci/djp130
52 https://doi.org/10.1111/j.1558-5646.1998.tb01823.x
53 https://doi.org/10.1371/journal.pbio.1000294
54 https://doi.org/10.1371/journal.pgen.0030170
55 https://doi.org/10.1371/journal.pgen.1000477
56 https://doi.org/10.1371/journal.pgen.1000481
57 https://doi.org/10.2307/2411226
58 schema:datePublished 2010-07
59 schema:datePublishedReg 2010-07-01
60 schema:description We report a set of tools to estimate the number of susceptibility loci and the distribution of their effect sizes for a trait on the basis of discoveries from existing genome-wide association studies (GWASs). We propose statistical power calculations for future GWASs using estimated distributions of effect sizes. Using reported GWAS findings for height, Crohn's disease and breast, prostate and colorectal (BPC) cancers, we determine that each of these traits is likely to harbor additional loci within the spectrum of low-penetrance common variants. These loci, which can be identified from sufficiently powerful GWASs, together could explain at least 15-20% of the known heritability of these traits. However, for BPC cancers, which have modest familial aggregation, our analysis suggests that risk models based on common variants alone will have modest discriminatory power (63.5% area under curve), even with new discoveries.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N105d8d2b445f40b394de544bd43e2e96
65 N956a73b9f8334d289ef86d7acf1a63c3
66 sg:journal.1103138
67 schema:name Estimation of effect size distribution from genome-wide association studies and implications for future discoveries
68 schema:pagination 570
69 schema:productId N073db7fbe88847d5bebf11ff6d6e3c1f
70 N0b0ab71fa05b42c1ab35cc98024359e6
71 N641a8432f9c24e4dace2a2c6cc071a1e
72 Ne30f3914dfb444a489ae32fe5b549482
73 Ne61ce4239f7947d2b710956a574dff4a
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025253932
75 https://doi.org/10.1038/ng.610
76 schema:sdDatePublished 2019-04-11T10:27
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N5ac2487ed7814d65b6674648c6a81143
79 schema:url https://www.nature.com/articles/ng.610
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N0480d49ff719492cab55c40a952f30c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Humans
85 rdf:type schema:DefinedTerm
86 N073db7fbe88847d5bebf11ff6d6e3c1f schema:name doi
87 schema:value 10.1038/ng.610
88 rdf:type schema:PropertyValue
89 N0b0ab71fa05b42c1ab35cc98024359e6 schema:name readcube_id
90 schema:value 784f4b07db3da76d016a679e81aed23ba8d4fd451e3b2e2d2eab879aa7a67bd6
91 rdf:type schema:PropertyValue
92 N105d8d2b445f40b394de544bd43e2e96 schema:volumeNumber 42
93 rdf:type schema:PublicationVolume
94 N158ea305d3c34b2c84466d32bc1ccaf8 rdf:first sg:person.0610464227.39
95 rdf:rest N385984d4642145078c1c85e9a53fef20
96 N1800dfb4739049618957c31fcc60a245 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Polymorphism, Single Nucleotide
98 rdf:type schema:DefinedTerm
99 N1822a738e9d245809271d4cd66b8a084 rdf:first sg:person.013651144457.90
100 rdf:rest rdf:nil
101 N2799bbaca8bb494abf90ad0604df54e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Statistics, Nonparametric
103 rdf:type schema:DefinedTerm
104 N379423de78814712b7edc621907bc65a rdf:first sg:person.01225120011.16
105 rdf:rest Nc4ea3a19efc3464faa6a9461132a9f5f
106 N385984d4642145078c1c85e9a53fef20 rdf:first sg:person.011007425747.29
107 rdf:rest Ndd133956fa264e7a8f45b994c7ca5c85
108 N3960724a235b484d9a3f1ca867992df7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Genetic Predisposition to Disease
110 rdf:type schema:DefinedTerm
111 N3ed4724ddc704279bd6ef6897edd2984 rdf:first sg:person.01362623255.10
112 rdf:rest N158ea305d3c34b2c84466d32bc1ccaf8
113 N471b50c91a1a4015b8edda07b51f9563 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Female
115 rdf:type schema:DefinedTerm
116 N5a4929dec7524b0a84678ca92de642fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Models, Genetic
118 rdf:type schema:DefinedTerm
119 N5ac2487ed7814d65b6674648c6a81143 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 N641a8432f9c24e4dace2a2c6cc071a1e schema:name dimensions_id
122 schema:value pub.1025253932
123 rdf:type schema:PropertyValue
124 N6571b3f7b3644c70a2f751aa29a48fc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Algorithms
126 rdf:type schema:DefinedTerm
127 N70410f2bb9614212852fc43b7e36795d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Prostatic Neoplasms
129 rdf:type schema:DefinedTerm
130 N70eaec2b7fc9436c855d290a06ac1be7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Penetrance
132 rdf:type schema:DefinedTerm
133 N7662da05e9fe4ebda442da40089aec5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Crohn Disease
135 rdf:type schema:DefinedTerm
136 N799f76724fec4dc381660552d19e1988 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Breast Neoplasms
138 rdf:type schema:DefinedTerm
139 N956a73b9f8334d289ef86d7acf1a63c3 schema:issueNumber 7
140 rdf:type schema:PublicationIssue
141 N9836d925cae74b08a98898e8b456f0d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Gene Frequency
143 rdf:type schema:DefinedTerm
144 Nafa68d6feb824cbb97b3215b4fd95ba5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Colorectal Neoplasms
146 rdf:type schema:DefinedTerm
147 Nbe4fd9c9009f44c7b6b2fb212d284979 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Body Height
149 rdf:type schema:DefinedTerm
150 Nc4ea3a19efc3464faa6a9461132a9f5f rdf:first sg:person.010403073577.20
151 rdf:rest N1822a738e9d245809271d4cd66b8a084
152 Ndd133956fa264e7a8f45b994c7ca5c85 rdf:first sg:person.01033315763.32
153 rdf:rest N379423de78814712b7edc621907bc65a
154 Ne30f3914dfb444a489ae32fe5b549482 schema:name pubmed_id
155 schema:value 20562874
156 rdf:type schema:PropertyValue
157 Ne61ce4239f7947d2b710956a574dff4a schema:name nlm_unique_id
158 schema:value 9216904
159 rdf:type schema:PropertyValue
160 Ne9f9cf8f8d324df89565cc146eb2313d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Genotype
162 rdf:type schema:DefinedTerm
163 Nf310f195c69846a592585759a30bc2d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Male
165 rdf:type schema:DefinedTerm
166 Nfc1bad53a7084e6da8afbd8a5454b9c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Genome-Wide Association Study
168 rdf:type schema:DefinedTerm
169 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
170 schema:name Biological Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
173 schema:name Genetics
174 rdf:type schema:DefinedTerm
175 sg:journal.1103138 schema:issn 1061-4036
176 1546-1718
177 schema:name Nature Genetics
178 rdf:type schema:Periodical
179 sg:person.01033315763.32 schema:affiliation https://www.grid.ac/institutes/grid.270240.3
180 schema:familyName Peters
181 schema:givenName Ulrike
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033315763.32
183 rdf:type schema:Person
184 sg:person.010403073577.20 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
185 schema:familyName Chanock
186 schema:givenName Stephen J
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403073577.20
188 rdf:type schema:Person
189 sg:person.011007425747.29 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
190 schema:familyName Gail
191 schema:givenName Mitchell H
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011007425747.29
193 rdf:type schema:Person
194 sg:person.01225120011.16 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
195 schema:familyName Jacobs
196 schema:givenName Kevin B
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225120011.16
198 rdf:type schema:Person
199 sg:person.01362623255.10 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
200 schema:familyName Park
201 schema:givenName Ju-Hyun
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362623255.10
203 rdf:type schema:Person
204 sg:person.013651144457.90 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
205 schema:familyName Chatterjee
206 schema:givenName Nilanjan
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651144457.90
208 rdf:type schema:Person
209 sg:person.0610464227.39 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
210 schema:familyName Wacholder
211 schema:givenName Sholom
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610464227.39
213 rdf:type schema:Person
214 sg:pub.10.1038/nature05887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027991306
215 https://doi.org/10.1038/nature05887
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nature08494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005147626
218 https://doi.org/10.1038/nature08494
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/ng.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023921533
221 https://doi.org/10.1038/ng.121
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/ng.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047406332
224 https://doi.org/10.1038/ng.122
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/ng.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023249798
227 https://doi.org/10.1038/ng.125
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/ng.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035894615
230 https://doi.org/10.1038/ng.175
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/ng.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025725602
233 https://doi.org/10.1038/ng.262
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/ng.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000555917
236 https://doi.org/10.1038/ng.353
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/ng.450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004622754
239 https://doi.org/10.1038/ng.450
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/ng.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048595961
242 https://doi.org/10.1038/ng.90
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/ng.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051674872
245 https://doi.org/10.1038/ng.91
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/ng0508-489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000802607
248 https://doi.org/10.1038/ng0508-489
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/ng853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041614038
251 https://doi.org/10.1038/ng853
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nrg2516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027055889
254 https://doi.org/10.1038/nrg2516
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1002/gepi.20437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009486866
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1002/pros.21002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000238720
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.ajhg.2008.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012504018
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.ajhg.2008.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038826763
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/j.tig.2008.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032202654
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1056/nejm200007133430201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007171562
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1056/nejmoa0804742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017775798
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1056/nejmoa0907727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048643469
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1056/nejmp0806284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019122643
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1056/nejmp0808934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034119584
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1056/nejmp0810107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004252172
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1086/340788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018358706
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1086/383282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058674533
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1086/520678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058792763
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1093/biostatistics/kxn001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044854771
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1093/jnci/djn180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044813602
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1093/jnci/djp130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046333320
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1111/j.1558-5646.1998.tb01823.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085730650
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1371/journal.pbio.1000294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025303373
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1371/journal.pgen.0030170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007759309
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1371/journal.pgen.1000477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051911808
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1371/journal.pgen.1000481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048631183
299 rdf:type schema:CreativeWork
300 https://doi.org/10.2307/2411226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069919922
301 rdf:type schema:CreativeWork
302 https://www.grid.ac/institutes/grid.270240.3 schema:alternateName Fred Hutchinson Cancer Research Center
303 schema:name Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
304 rdf:type schema:Organization
305 https://www.grid.ac/institutes/grid.48336.3a schema:alternateName National Cancer Institute
306 schema:name Core Genotyping Facility, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Gaithersburg, Maryland, USA.
307 Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland, USA.
308 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...