Variance component model to account for sample structure in genome-wide association studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-04

AUTHORS

Hyun Min Kang, Jae Hoon Sul, Susan K Service, Noah A Zaitlen, Sit-yee Kong, Nelson B Freimer, Chiara Sabatti, Eleazar Eskin

ABSTRACT

Although genome-wide association studies (GWASs) have identified numerous loci associated with complex traits, imprecise modeling of the genetic relatedness within study samples may cause substantial inflation of test statistics and possibly spurious associations. Variance component approaches, such as efficient mixed-model association (EMMA), can correct for a wide range of sample structures by explicitly accounting for pairwise relatedness between individuals, using high-density markers to model the phenotype distribution; but such approaches are computationally impractical. We report here a variance component approach implemented in publicly available software, EMMA eXpedited (EMMAX), that reduces the computational time for analyzing large GWAS data sets from years to hours. We apply this method to two human GWAS data sets, performing association analysis for ten quantitative traits from the Northern Finland Birth Cohort and seven common diseases from the Wellcome Trust Case Control Consortium. We find that EMMAX outperforms both principal component analysis and genomic control in correcting for sample structure. More... »

PAGES

348

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng.548

DOI

http://dx.doi.org/10.1038/ng.548

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016055940

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20208533


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Groups", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Principal Component Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.", 
            "Center for Computational Medicine and Bioinformatics, The University of Michigan Medical School, Ann Arbor, Michigan, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Hyun Min", 
        "id": "sg:person.0625017161.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625017161.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Computer Science Department, University of California, Los Angeles, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sul", 
        "givenName": "Jae Hoon", 
        "id": "sg:person.0775062750.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775062750.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Center for Neurobehavioral Genetics, University of California, Los Angeles, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Service", 
        "givenName": "Susan K", 
        "id": "sg:person.0772520322.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772520322.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaitlen", 
        "givenName": "Noah A", 
        "id": "sg:person.01273314120.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273314120.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Center for Neurobehavioral Genetics, University of California, Los Angeles, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kong", 
        "givenName": "Sit-yee", 
        "id": "sg:person.01177273147.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177273147.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Center for Neurobehavioral Genetics, University of California, Los Angeles, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freimer", 
        "givenName": "Nelson B", 
        "id": "sg:person.01356675577.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356675577.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sabatti", 
        "givenName": "Chiara", 
        "id": "sg:person.01303166415.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303166415.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Computer Science Department, University of California, Los Angeles, California, USA.", 
            "Department of Human Genetics, University of California, Los Angeles, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eskin", 
        "givenName": "Eleazar", 
        "id": "sg:person.01014741640.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014741640.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000008183", 
          "https://doi.org/10.1038/ng1492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000008183", 
          "https://doi.org/10.1038/ng1492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000555917", 
          "https://doi.org/10.1038/ng.353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000555917", 
          "https://doi.org/10.1038/ng.353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01441146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002922160", 
          "https://doi.org/10.1007/bf01441146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01441146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002922160", 
          "https://doi.org/10.1007/bf01441146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004556449", 
          "https://doi.org/10.1038/nature05911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004838062", 
          "https://doi.org/10.1038/ng.354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0080456800012163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005110100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005519278", 
          "https://doi.org/10.1038/nature07331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006325160", 
          "https://doi.org/10.1038/ng.120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006478651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012296291", 
          "https://doi.org/10.1038/nrg1960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012296291", 
          "https://doi.org/10.1038/nrg1960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013290784", 
          "https://doi.org/10.1038/ng.75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0005825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013386328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016303270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017217223", 
          "https://doi.org/10.1038/ng1537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017217223", 
          "https://doi.org/10.1038/ng1537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.1045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019703724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/521580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020324021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00997.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2004.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021667031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0020157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022011936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022555792", 
          "https://doi.org/10.1038/ng.139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022630576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(2001)082[0290:fmmtcd]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022753646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9297(07)62952-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023340041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024571818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025919373", 
          "https://doi.org/10.1038/ng.357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025919373", 
          "https://doi.org/10.1038/ng.357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0020132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026041030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027991306", 
          "https://doi.org/10.1038/nature05887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0020190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029170965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0010032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034233115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0010032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034233115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.108.094201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035578011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.108.094201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035578011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.080101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035921397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.080101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035921397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038998273", 
          "https://doi.org/10.1038/nature06406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053552", 
          "https://doi.org/10.1038/nmeth756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053552", 
          "https://doi.org/10.1038/nmeth756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041210106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042758699", 
          "https://doi.org/10.1038/ng1885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042758699", 
          "https://doi.org/10.1038/ng1885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045101681", 
          "https://doi.org/10.1038/ng.271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/456018a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050730348", 
          "https://doi.org/10.1038/456018a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051462094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051462094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052087865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672300033620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053880488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/301820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058609426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/323659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058624235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/324025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058624360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058792270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2670187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070052625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070164004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074500469", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074678911", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075259848", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080678167", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470866993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470866993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470866993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661313"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04", 
    "datePublishedReg": "2010-04-01", 
    "description": "Although genome-wide association studies (GWASs) have identified numerous loci associated with complex traits, imprecise modeling of the genetic relatedness within study samples may cause substantial inflation of test statistics and possibly spurious associations. Variance component approaches, such as efficient mixed-model association (EMMA), can correct for a wide range of sample structures by explicitly accounting for pairwise relatedness between individuals, using high-density markers to model the phenotype distribution; but such approaches are computationally impractical. We report here a variance component approach implemented in publicly available software, EMMA eXpedited (EMMAX), that reduces the computational time for analyzing large GWAS data sets from years to hours. We apply this method to two human GWAS data sets, performing association analysis for ten quantitative traits from the Northern Finland Birth Cohort and seven common diseases from the Wellcome Trust Case Control Consortium. We find that EMMAX outperforms both principal component analysis and genomic control in correcting for sample structure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng.548", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3082348", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3081976", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2421618", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705105", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3058678", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2689499", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2691282", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2441318", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2514816", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2541405", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2669749", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Variance component model to account for sample structure in genome-wide association studies", 
    "pagination": "348", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4c80d2cc7609ad60a26371edc996077d9a8087f7160eb89164dfff3a73399ee4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20208533"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng.548"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016055940"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng.548", 
      "https://app.dimensions.ai/details/publication/pub.1016055940"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89786_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ng.548"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng.548'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng.548'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng.548'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng.548'


 

This table displays all metadata directly associated to this object as RDF triples.

370 TRIPLES      21 PREDICATES      93 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng.548 schema:about N0736322d961840bc9699c38d7b84078a
2 N106b54d871eb4a8cb6635344fae9e727
3 N118fcd66690c4976b2e90de83e4d9288
4 N318df5e7688141a08eb5a047b3f4b400
5 N5bab2973341c48dba628048c8690e79e
6 Na78f4105544c43d79b7236301f9d8711
7 Ncb3b2a39b9d4480ca411efb335d0c36b
8 Ncc3414f816074b09b5fbecc640cf44fb
9 Ned57652c1b834f37a1364218e9331c23
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author Nae8db8a6b3964ef09235335e5fc4e6e3
13 schema:citation sg:pub.10.1007/bf01441146
14 sg:pub.10.1038/456018a
15 sg:pub.10.1038/nature05887
16 sg:pub.10.1038/nature05911
17 sg:pub.10.1038/nature06406
18 sg:pub.10.1038/nature07331
19 sg:pub.10.1038/nature08494
20 sg:pub.10.1038/ng.120
21 sg:pub.10.1038/ng.139
22 sg:pub.10.1038/ng.271
23 sg:pub.10.1038/ng.353
24 sg:pub.10.1038/ng.354
25 sg:pub.10.1038/ng.357
26 sg:pub.10.1038/ng.75
27 sg:pub.10.1038/ng1492
28 sg:pub.10.1038/ng1537
29 sg:pub.10.1038/ng1702
30 sg:pub.10.1038/ng1847
31 sg:pub.10.1038/ng1885
32 sg:pub.10.1038/nmeth756
33 sg:pub.10.1038/nrg1960
34 https://app.dimensions.ai/details/publication/pub.1074500469
35 https://app.dimensions.ai/details/publication/pub.1074678911
36 https://app.dimensions.ai/details/publication/pub.1075259848
37 https://app.dimensions.ai/details/publication/pub.1080678167
38 https://doi.org/10.1002/0470866993
39 https://doi.org/10.1002/gepi.1045
40 https://doi.org/10.1002/gepi.20297
41 https://doi.org/10.1002/gepi.20403
42 https://doi.org/10.1002/gepi.20418
43 https://doi.org/10.1016/j.ajhg.2008.11.005
44 https://doi.org/10.1016/j.gde.2004.04.008
45 https://doi.org/10.1016/s0002-9297(07)62952-8
46 https://doi.org/10.1017/s0016672300033620
47 https://doi.org/10.1017/s0080456800012163
48 https://doi.org/10.1086/301820
49 https://doi.org/10.1086/302800
50 https://doi.org/10.1086/302959
51 https://doi.org/10.1086/323659
52 https://doi.org/10.1086/324025
53 https://doi.org/10.1086/519497
54 https://doi.org/10.1086/521580
55 https://doi.org/10.1111/j.0006-341x.1999.00997.x
56 https://doi.org/10.1371/journal.pgen.0010032
57 https://doi.org/10.1371/journal.pgen.0020132
58 https://doi.org/10.1371/journal.pgen.0020157
59 https://doi.org/10.1371/journal.pgen.0020190
60 https://doi.org/10.1371/journal.pgen.0030004
61 https://doi.org/10.1371/journal.pgen.1000365
62 https://doi.org/10.1371/journal.pone.0005825
63 https://doi.org/10.1534/genetics.107.080101
64 https://doi.org/10.1534/genetics.108.094201
65 https://doi.org/10.1890/0012-9658(2001)082[0290:fmmtcd]2.0.co;2
66 https://doi.org/10.2307/2670187
67 https://doi.org/10.2307/3001775
68 schema:datePublished 2010-04
69 schema:datePublishedReg 2010-04-01
70 schema:description Although genome-wide association studies (GWASs) have identified numerous loci associated with complex traits, imprecise modeling of the genetic relatedness within study samples may cause substantial inflation of test statistics and possibly spurious associations. Variance component approaches, such as efficient mixed-model association (EMMA), can correct for a wide range of sample structures by explicitly accounting for pairwise relatedness between individuals, using high-density markers to model the phenotype distribution; but such approaches are computationally impractical. We report here a variance component approach implemented in publicly available software, EMMA eXpedited (EMMAX), that reduces the computational time for analyzing large GWAS data sets from years to hours. We apply this method to two human GWAS data sets, performing association analysis for ten quantitative traits from the Northern Finland Birth Cohort and seven common diseases from the Wellcome Trust Case Control Consortium. We find that EMMAX outperforms both principal component analysis and genomic control in correcting for sample structure.
71 schema:genre research_article
72 schema:inLanguage en
73 schema:isAccessibleForFree true
74 schema:isPartOf N4e40707be10f45058a7e13b319eadcc1
75 N6197922771354b14a59001a665f8f2ce
76 sg:journal.1103138
77 schema:name Variance component model to account for sample structure in genome-wide association studies
78 schema:pagination 348
79 schema:productId N2967300c5a044cf38b36c04a72fb558d
80 N69fda06f200544b68e62c17dbd3ba2af
81 Nad2dd595cc5d4c3c993139436470e785
82 Nd0ccbe750f0d4adb9f85358f2ba7f84d
83 Nf1ffbd3c3c174167a60c523f0b5a9c2e
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016055940
85 https://doi.org/10.1038/ng.548
86 schema:sdDatePublished 2019-04-11T09:50
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N065008ccf9be48c3a9aa2d61841ffdf9
89 schema:url https://www.nature.com/articles/ng.548
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N065008ccf9be48c3a9aa2d61841ffdf9 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N0736322d961840bc9699c38d7b84078a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Humans
97 rdf:type schema:DefinedTerm
98 N106b54d871eb4a8cb6635344fae9e727 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Genome-Wide Association Study
100 rdf:type schema:DefinedTerm
101 N118fcd66690c4976b2e90de83e4d9288 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Population Groups
103 rdf:type schema:DefinedTerm
104 N2967300c5a044cf38b36c04a72fb558d schema:name nlm_unique_id
105 schema:value 9216904
106 rdf:type schema:PropertyValue
107 N318df5e7688141a08eb5a047b3f4b400 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Models, Statistical
109 rdf:type schema:DefinedTerm
110 N43813a4ed6f14609b35d34cf8062cfa7 rdf:first sg:person.01303166415.64
111 rdf:rest Ne9b3c5d669744b8993be51ddb34a6560
112 N493b544da80a4f68bb26c4d4d3851393 rdf:first sg:person.01177273147.03
113 rdf:rest Nd6073b821efd4c29a7f87309c7711438
114 N4e40707be10f45058a7e13b319eadcc1 schema:issueNumber 4
115 rdf:type schema:PublicationIssue
116 N54f3974501494b2d919accee3032155c rdf:first sg:person.0772520322.28
117 rdf:rest N65ede6cca5904c54a0a1d128489d10b2
118 N5bab2973341c48dba628048c8690e79e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Software
120 rdf:type schema:DefinedTerm
121 N6197922771354b14a59001a665f8f2ce schema:volumeNumber 42
122 rdf:type schema:PublicationVolume
123 N65ede6cca5904c54a0a1d128489d10b2 rdf:first sg:person.01273314120.38
124 rdf:rest N493b544da80a4f68bb26c4d4d3851393
125 N69fda06f200544b68e62c17dbd3ba2af schema:name readcube_id
126 schema:value 4c80d2cc7609ad60a26371edc996077d9a8087f7160eb89164dfff3a73399ee4
127 rdf:type schema:PropertyValue
128 N713c95bd9eee4578b7ba5d345c4f3731 rdf:first sg:person.0775062750.18
129 rdf:rest N54f3974501494b2d919accee3032155c
130 Na78f4105544c43d79b7236301f9d8711 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Polymorphism, Single Nucleotide
132 rdf:type schema:DefinedTerm
133 Nad2dd595cc5d4c3c993139436470e785 schema:name pubmed_id
134 schema:value 20208533
135 rdf:type schema:PropertyValue
136 Nae8db8a6b3964ef09235335e5fc4e6e3 rdf:first sg:person.0625017161.49
137 rdf:rest N713c95bd9eee4578b7ba5d345c4f3731
138 Ncb3b2a39b9d4480ca411efb335d0c36b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Quantitative Trait Loci
140 rdf:type schema:DefinedTerm
141 Ncc3414f816074b09b5fbecc640cf44fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Principal Component Analysis
143 rdf:type schema:DefinedTerm
144 Nd0ccbe750f0d4adb9f85358f2ba7f84d schema:name dimensions_id
145 schema:value pub.1016055940
146 rdf:type schema:PropertyValue
147 Nd6073b821efd4c29a7f87309c7711438 rdf:first sg:person.01356675577.09
148 rdf:rest N43813a4ed6f14609b35d34cf8062cfa7
149 Ne9b3c5d669744b8993be51ddb34a6560 rdf:first sg:person.01014741640.26
150 rdf:rest rdf:nil
151 Ned57652c1b834f37a1364218e9331c23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Models, Genetic
153 rdf:type schema:DefinedTerm
154 Nf1ffbd3c3c174167a60c523f0b5a9c2e schema:name doi
155 schema:value 10.1038/ng.548
156 rdf:type schema:PropertyValue
157 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
158 schema:name Biological Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
161 schema:name Genetics
162 rdf:type schema:DefinedTerm
163 sg:grant.2421618 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.548
164 rdf:type schema:MonetaryGrant
165 sg:grant.2441318 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.548
166 rdf:type schema:MonetaryGrant
167 sg:grant.2514816 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.548
168 rdf:type schema:MonetaryGrant
169 sg:grant.2541405 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.548
170 rdf:type schema:MonetaryGrant
171 sg:grant.2669749 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.548
172 rdf:type schema:MonetaryGrant
173 sg:grant.2689499 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.548
174 rdf:type schema:MonetaryGrant
175 sg:grant.2691282 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.548
176 rdf:type schema:MonetaryGrant
177 sg:grant.2705105 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.548
178 rdf:type schema:MonetaryGrant
179 sg:grant.3058678 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.548
180 rdf:type schema:MonetaryGrant
181 sg:grant.3081976 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.548
182 rdf:type schema:MonetaryGrant
183 sg:grant.3082348 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.548
184 rdf:type schema:MonetaryGrant
185 sg:journal.1103138 schema:issn 1061-4036
186 1546-1718
187 schema:name Nature Genetics
188 rdf:type schema:Periodical
189 sg:person.01014741640.26 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
190 schema:familyName Eskin
191 schema:givenName Eleazar
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014741640.26
193 rdf:type schema:Person
194 sg:person.01177273147.03 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
195 schema:familyName Kong
196 schema:givenName Sit-yee
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177273147.03
198 rdf:type schema:Person
199 sg:person.01273314120.38 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
200 schema:familyName Zaitlen
201 schema:givenName Noah A
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273314120.38
203 rdf:type schema:Person
204 sg:person.01303166415.64 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
205 schema:familyName Sabatti
206 schema:givenName Chiara
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303166415.64
208 rdf:type schema:Person
209 sg:person.01356675577.09 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
210 schema:familyName Freimer
211 schema:givenName Nelson B
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356675577.09
213 rdf:type schema:Person
214 sg:person.0625017161.49 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
215 schema:familyName Kang
216 schema:givenName Hyun Min
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625017161.49
218 rdf:type schema:Person
219 sg:person.0772520322.28 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
220 schema:familyName Service
221 schema:givenName Susan K
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772520322.28
223 rdf:type schema:Person
224 sg:person.0775062750.18 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
225 schema:familyName Sul
226 schema:givenName Jae Hoon
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775062750.18
228 rdf:type schema:Person
229 sg:pub.10.1007/bf01441146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002922160
230 https://doi.org/10.1007/bf01441146
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/456018a schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730348
233 https://doi.org/10.1038/456018a
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nature05887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027991306
236 https://doi.org/10.1038/nature05887
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nature05911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556449
239 https://doi.org/10.1038/nature05911
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nature06406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038998273
242 https://doi.org/10.1038/nature06406
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/nature07331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005519278
245 https://doi.org/10.1038/nature07331
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nature08494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005147626
248 https://doi.org/10.1038/nature08494
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/ng.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006325160
251 https://doi.org/10.1038/ng.120
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/ng.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022555792
254 https://doi.org/10.1038/ng.139
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/ng.271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045101681
257 https://doi.org/10.1038/ng.271
258 rdf:type schema:CreativeWork
259 sg:pub.10.1038/ng.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000555917
260 https://doi.org/10.1038/ng.353
261 rdf:type schema:CreativeWork
262 sg:pub.10.1038/ng.354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004838062
263 https://doi.org/10.1038/ng.354
264 rdf:type schema:CreativeWork
265 sg:pub.10.1038/ng.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025919373
266 https://doi.org/10.1038/ng.357
267 rdf:type schema:CreativeWork
268 sg:pub.10.1038/ng.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013290784
269 https://doi.org/10.1038/ng.75
270 rdf:type schema:CreativeWork
271 sg:pub.10.1038/ng1492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000008183
272 https://doi.org/10.1038/ng1492
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/ng1537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017217223
275 https://doi.org/10.1038/ng1537
276 rdf:type schema:CreativeWork
277 sg:pub.10.1038/ng1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035781360
278 https://doi.org/10.1038/ng1702
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
281 https://doi.org/10.1038/ng1847
282 rdf:type schema:CreativeWork
283 sg:pub.10.1038/ng1885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042758699
284 https://doi.org/10.1038/ng1885
285 rdf:type schema:CreativeWork
286 sg:pub.10.1038/nmeth756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053552
287 https://doi.org/10.1038/nmeth756
288 rdf:type schema:CreativeWork
289 sg:pub.10.1038/nrg1960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012296291
290 https://doi.org/10.1038/nrg1960
291 rdf:type schema:CreativeWork
292 https://app.dimensions.ai/details/publication/pub.1074500469 schema:CreativeWork
293 https://app.dimensions.ai/details/publication/pub.1074678911 schema:CreativeWork
294 https://app.dimensions.ai/details/publication/pub.1075259848 schema:CreativeWork
295 https://app.dimensions.ai/details/publication/pub.1080678167 schema:CreativeWork
296 https://doi.org/10.1002/0470866993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661313
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1002/gepi.1045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019703724
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1002/gepi.20297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052087865
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1002/gepi.20403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006478651
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1002/gepi.20418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051462094
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1016/j.ajhg.2008.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303270
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1016/j.gde.2004.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021667031
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1016/s0002-9297(07)62952-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023340041
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1017/s0016672300033620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053880488
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1017/s0080456800012163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005110100
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1086/301820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058609426
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1086/302800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610360
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1086/302959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022630576
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1086/323659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058624235
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1086/324025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058624360
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1086/519497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058792270
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1086/521580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020324021
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1111/j.0006-341x.1999.00997.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081768
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1371/journal.pgen.0010032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034233115
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1371/journal.pgen.0020132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026041030
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1371/journal.pgen.0020157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022011936
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1371/journal.pgen.0020190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029170965
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1371/journal.pgen.0030004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024571818
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1371/journal.pgen.1000365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041210106
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1371/journal.pone.0005825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013386328
345 rdf:type schema:CreativeWork
346 https://doi.org/10.1534/genetics.107.080101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035921397
347 rdf:type schema:CreativeWork
348 https://doi.org/10.1534/genetics.108.094201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035578011
349 rdf:type schema:CreativeWork
350 https://doi.org/10.1890/0012-9658(2001)082[0290:fmmtcd]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022753646
351 rdf:type schema:CreativeWork
352 https://doi.org/10.2307/2670187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070052625
353 rdf:type schema:CreativeWork
354 https://doi.org/10.2307/3001775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070164004
355 rdf:type schema:CreativeWork
356 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
357 schema:name Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California, USA.
358 rdf:type schema:Organization
359 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
360 schema:name Center for Neurobehavioral Genetics, University of California, Los Angeles, California, USA.
361 Computer Science Department, University of California, Los Angeles, California, USA.
362 Department of Human Genetics, University of California, Los Angeles, California, USA.
363 rdf:type schema:Organization
364 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
365 schema:name Center for Computational Medicine and Bioinformatics, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
366 Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
367 rdf:type schema:Organization
368 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
369 schema:name Department of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA.
370 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...