Personalized copy number and segmental duplication maps using next-generation sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-08-30

AUTHORS

Can Alkan, Jeffrey M Kidd, Tomas Marques-Bonet, Gozde Aksay, Francesca Antonacci, Fereydoun Hormozdiari, Jacob O Kitzman, Carl Baker, Maika Malig, Onur Mutlu, S Cenk Sahinalp, Richard A Gibbs, Evan E Eichler

ABSTRACT

Evan Eichler and colleagues have developed an algorithm called mrFAST to map short, next-generation sequence reads across the genome that allows for the accurate prediction of copy-number variation.

PAGES

1061-1067

References to SciGraph publications

  • 2008-09-07. Systematic assessment of copy number variant detection via genome-wide SNP genotyping in NATURE GENETICS
  • 2005-05-15. Fine-scale structural variation of the human genome in NATURE GENETICS
  • 2004-10. Shotgun sequence assembly and recent segmental duplications within the human genome in NATURE
  • 2008-04. The complete genome of an individual by massively parallel DNA sequencing in NATURE
  • 2006-02. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans in NATURE
  • 2008-05. Mapping and sequencing of structural variation from eight human genomes in NATURE
  • 2008-09-07. Integrated detection and population-genetic analysis of SNPs and copy number variation in NATURE GENETICS
  • 2007-05-21. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity in NATURE GENETICS
  • 1983. On approximate string matching in FOUNDATIONS OF COMPUTATION THEORY
  • 2008-11. The diploid genome sequence of an Asian individual in NATURE
  • 2007-10-07. Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution in NATURE GENETICS
  • 2007-12-02. Psoriasis is associated with increased β-defensin genomic copy number in NATURE GENETICS
  • 2008-01-20. Whole-genome sequencing and variant discovery in C. elegans in NATURE METHODS
  • 2008-11-30. High-resolution mapping of copy-number alterations with massively parallel sequencing in NATURE METHODS
  • 2008-04-27. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing in NATURE GENETICS
  • 2006-11. Global variation in copy number in the human genome in NATURE
  • 2008-11. Accurate whole human genome sequencing using reversible terminator chemistry in NATURE
  • 2004-08-01. Detection of large-scale variation in the human genome in NATURE GENETICS
  • 2009-02-01. A burst of segmental duplications in the genome of the African great ape ancestor in NATURE
  • Journal

    TITLE

    Nature Genetics

    ISSUE

    10

    VOLUME

    41

    Related Patents

  • Genetic Copy Number Determination Using High Throughput Multiplex Sequencing Of Smashed Nucleotides
  • Methods And Systems For Digitally Counting Features On Arrays
  • High-Throughput Single-Cell Analysis Combining Proteomic And Genomic Information
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods To Determine Tumor Gene Copy Number By Analysis Of Cell-Free Dna
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Methods For Characterizing Copy Number Variation Using Proximity-Litigation Sequencing
  • Methods And Compositions For Whole Transcriptome Amplification
  • Normalization Of Nucleic Acid Libraries
  • Detecting Cancer Mutations And Aneuploidy In Chromosomal Segments
  • Selective Extension In Single Cell Whole Transcriptome Analysis
  • Molecular Barcoding On Opposite Transcript Ends
  • Error Correction In Amplification Of Samples
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Compositions For Determining Ploidy
  • Methods For Simultaneous Amplification Of Target Loci
  • Methods And Systems For Detecting Genetic Variants
  • Methods For Simultaneous Amplification Of Target Loci
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Machine Learning For Somatic Single Nucleotide Variant Detection In Cell-Free Tumor Nucleic Acid Sequencing Applications
  • Selective Amplification Using Blocking Oligonucleotides
  • System And Method For Cleaning Noisy Genetic Data And Determining Chromosome Copy Number
  • Activity-Dependent Gene Pairs As Therapeutic Targets And Methods And Devices To Identify The Same
  • Methods And Systems For Detecting Genetic Variants
  • Single Cell Nucleic Acid Detection And Analysis
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Massively Parallel Single Cell Analysis
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Methods For Simultaneous Amplification Of Target Loci
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods For Analysing Nucleic Acid Sequence Information Using Gc Bias, Optionally For Detecting Fetal Nucleic Acid Abnormalities
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Detecting Mutations And Ploidy In Chromosomal Segments
  • Measurement Of Protein Expression Using Reagents With Barcoded Oligonucleotide Sequences
  • Methods And Systems For Detecting Genetic Variants
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Compositions And Kits For Molecular Counting
  • Methods For Simultaneous Amplification Of Target Loci
  • Compositions And Methods For Identifying Nucleic Acid Molecules
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Compositions And Methods For Identifying Nucleic Acid Molecules
  • System And Method For Cleaning Noisy Genetic Data And Determining Chromosome Copy Number
  • Methods For Non-Invasive Prenatal Paternity Testing
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • Single Cell Nucleic Acid Detection And Analysis
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Sample Indexing For Single Cells
  • Noninvasive Prenatal Molecular Karyotyping From Maternal Plasma
  • Methods For Preparing A Dna Fraction From A Biological Sample For Analyzing Genotypes Of Cell-Free Dna
  • Hydrophilic Coating Of Fluidic Channels
  • Cell Free Dna Diagnostic Testing Standards
  • Methods For Simultaneous Amplification Of Target Loci
  • Compositions And Methods For Identifying Nucleic Acid Molecules
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Systems For Digitally Counting Features On Arrays
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Methods For Multiplex Pcr Amplification Of Target Loci In A Nucleic Acid Sample
  • Massively Parallel Single Cell Analysis
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • Molecular Indexing Of Internal Sequences
  • Detecting Mutations And Ploidy In Chromosomal Segments
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Analysis Of Nucleic Acids
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • Massively Parallel Single Cell Analysis
  • Cell Free Dna Diagnostic Testing Standards
  • Molecular Label Counting Adjustment Methods
  • Massively Parallel Single Cell Analysis
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Detecting Mutations And Ploidy In Chromosomal Segments
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Single Cell Nucleic Acid Detection And Analysis
  • Methods For Simultaneous Amplification Of Target Loci
  • Methods For Simultaneous Amplification Of Target Loci
  • Compositions, Methods, And Kits For Isolating Nucleic Acids
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Single Cell Nucleic Acid Detection And Analysis
  • Methods And Compositions For Analyzing Nucleic Acid
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Spatially Addressable Molecular Barcoding
  • Detecting Mutations And Ploidy In Chromosomal Segments
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Methods For Simultaneous Amplification Of Target Loci
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • System And Method For Cleaning Noisy Genetic Data And Determining Chromosome Copy Number
  • Spatially Addressable Molecular Barcoding
  • Measurement Of Protein Expression Using Reagents With Barcoded Oligonucleotide Sequences
  • Methods For Simultaneous Amplification Of Target Loci
  • Massively Parallel Single Cell Analysis
  • System And Method For Cleaning Noisy Genetic Data And Determining Chromosome Copy Number
  • Single Cell Nucleic Acid Detection And Analysis
  • Methods And Processes For Non-Invasive Detection Of A Microduplication Or A Microdeletion With Reduced Sequence Read Count Error
  • Accurate Molecular Barcoding
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Label-Tags
  • Spatially Addressable Molecular Barcoding
  • System And Method For Cleaning Noisy Genetic Data And Determining Chromosome Copy Number
  • Methods For Simultaneous Amplification Of Target Loci
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • System And Method For Cleaning Noisy Genetic Data And Determining Chromosome Copy Number
  • Methods And Systems For Detecting Genetic Variants
  • Methods For Nested Pcr Amplification Of Cell-Free Dna
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Reducing Sequence Read Count Error In Assessment Of Complex Genetic Variations
  • Measurement Of Protein Expression Using Reagents With Barcoded Oligonucleotide Sequences
  • Methods For Simultaneous Amplification Of Target Loci
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Spatially Addressable Molecular Barcoding
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods For Multi-Resolution Analysis Of Cell-Free Nucleic Acids
  • Methods And Processes For Non Invasive Assessment Of A Genetic Variation
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Noninvasive Prenatal Molecular Karyotyping From Maternal Plasma
  • Methods For Rna Quantification
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • High-Throughput Single-Cell Analysis Combining Proteomic And Genomic Information
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Compositions For Analyzing Nucleic Acid
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Systems For Detecting Genetic Variants
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Genetic Copy Number Alteration Classifications
  • Detecting Mutations And Ploidy In Chromosomal Segments
  • Methods For Multi-Resolution Analysis Of Cell-Free Nucleic Acids
  • Massively Parallel Single Cell Analysis
  • Methods For Expression Profile Classification
  • Methods And Systems For Detecting Genetic Variants
  • Analysis Of Nucleic Acids
  • Molecular Indexing Of Internal Sequences
  • Methods For Detecting Fetal Nucleic Acids And Diagnosing Fetal Abnormalities
  • Methods For Simultaneous Amplification Of Target Loci
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods And Systems For Detecting Genetic Variants
  • Methods And Compositions For Library Normalization
  • Methods For Simultaneous Amplification Of Target Loci
  • Detecting Mutations And Ploidy In Chromosomal Segments
  • Methods For Simultaneous Amplification Of Target Loci
  • Amplification Of Cell-Free Dna Using Nested Pcr
  • Methods For Simultaneous Amplification Of Target Loci
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods For Simultaneous Amplifications Of Target Loci
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Massively Parallel Single Cell Analysis
  • Single Cell Nucleic Acid Detection And Analysis
  • Massively Parallel Single Cell Analysis
  • Detecting Mutations And Ploidy In Chromosomal Segments
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Massively Parallel Single Cell Analysis
  • Methods And Compositions For Library Normalization
  • Single Cell Nucleic Acid Detection And Analysis
  • Massively Parallel Single Cell Analysis
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Methods And Uses For Molecular Tags
  • Massively Parallel Single Cell Analysis
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Method For Determining Genotypes In Regions Of High Homology
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ng.437

    DOI

    http://dx.doi.org/10.1038/ng.437

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035989827

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19718026


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Dosage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Duplication", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomic Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute, Seattle, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.413575.1", 
              "name": [
                "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA", 
                "Howard Hughes Medical Institute, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alkan", 
            "givenName": "Can", 
            "id": "sg:person.0737070412.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737070412.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kidd", 
            "givenName": "Jeffrey M", 
            "id": "sg:person.01341130334.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341130334.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Catalonia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.507636.1", 
              "name": [
                "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA", 
                "Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Catalonia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marques-Bonet", 
            "givenName": "Tomas", 
            "id": "sg:person.0775754503.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775754503.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aksay", 
            "givenName": "Gozde", 
            "id": "sg:person.01344771434.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344771434.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Antonacci", 
            "givenName": "Francesca", 
            "id": "sg:person.01113740435.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113740435.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada", 
              "id": "http://www.grid.ac/institutes/grid.61971.38", 
              "name": [
                "School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hormozdiari", 
            "givenName": "Fereydoun", 
            "id": "sg:person.0701340666.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701340666.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kitzman", 
            "givenName": "Jacob O", 
            "id": "sg:person.01245031315.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245031315.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baker", 
            "givenName": "Carl", 
            "id": "sg:person.01266240154.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266240154.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Malig", 
            "givenName": "Maika", 
            "id": "sg:person.0621011335.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621011335.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA", 
              "id": "http://www.grid.ac/institutes/grid.147455.6", 
              "name": [
                "Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mutlu", 
            "givenName": "Onur", 
            "id": "sg:person.01142460404.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142460404.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada", 
              "id": "http://www.grid.ac/institutes/grid.61971.38", 
              "name": [
                "School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sahinalp", 
            "givenName": "S Cenk", 
            "id": "sg:person.01132015666.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132015666.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Baylor College of Medicine, Houston, Texas, USA", 
              "id": "http://www.grid.ac/institutes/grid.39382.33", 
              "name": [
                "Baylor College of Medicine, Houston, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gibbs", 
            "givenName": "Richard A", 
            "id": "sg:person.01145707302.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145707302.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute, Seattle, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.413575.1", 
              "name": [
                "Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA", 
                "Howard Hughes Medical Institute, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eichler", 
            "givenName": "Evan E", 
            "id": "sg:person.0705101106.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705101106.89"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.1276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025333243", 
              "https://doi.org/10.1038/nmeth.1276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021694182", 
              "https://doi.org/10.1038/nature04489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925490", 
              "https://doi.org/10.1038/nature05329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047672670", 
              "https://doi.org/10.1038/nature06884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2007.9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008279336", 
              "https://doi.org/10.1038/ng.2007.9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038272226", 
              "https://doi.org/10.1038/nature06862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047246435", 
              "https://doi.org/10.1038/ng.128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030291886", 
              "https://doi.org/10.1038/nature03062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001828025", 
              "https://doi.org/10.1038/ng.236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925719", 
              "https://doi.org/10.1038/nature07517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039814739", 
              "https://doi.org/10.1038/ng2046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002767840", 
              "https://doi.org/10.1038/ng1416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001773338", 
              "https://doi.org/10.1038/nmeth.1179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016969839", 
              "https://doi.org/10.1038/nature07484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-12689-9_129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011083906", 
              "https://doi.org/10.1007/3-540-12689-9_129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2007.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006402622", 
              "https://doi.org/10.1038/ng.2007.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014017119", 
              "https://doi.org/10.1038/ng1562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003544206", 
              "https://doi.org/10.1038/nature07744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047420273", 
              "https://doi.org/10.1038/ng.238"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-08-30", 
        "datePublishedReg": "2009-08-30", 
        "description": "Evan Eichler and colleagues have developed an algorithm called mrFAST to map short, next-generation sequence reads across the genome that allows for the accurate prediction of copy-number variation.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ng.437", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2529420", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2436673", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1103138", 
            "issn": [
              "1061-4036", 
              "1546-1718"
            ], 
            "name": "Nature Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "41"
          }
        ], 
        "keywords": [
          "next-generation sequences", 
          "copy number variations", 
          "next-generation sequencing", 
          "duplication map", 
          "genome", 
          "sequencing", 
          "sequence", 
          "Eichler", 
          "variation", 
          "number", 
          "maps", 
          "accurate prediction", 
          "prediction", 
          "colleagues", 
          "algorithm"
        ], 
        "name": "Personalized copy number and segmental duplication maps using next-generation sequencing", 
        "pagination": "1061-1067", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035989827"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ng.437"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19718026"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ng.437", 
          "https://app.dimensions.ai/details/publication/pub.1035989827"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_496.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ng.437"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng.437'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng.437'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng.437'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng.437'


     

    This table displays all metadata directly associated to this object as RDF triples.

    297 TRIPLES      21 PREDICATES      69 URIs      42 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ng.437 schema:about N05b7a676ebab473fb6c7193f3dbbf17b
    2 N3492ef5f0a7143a5b2e9f1f7f862e9e6
    3 N4959e2a6f69c493d983e40226e113c8c
    4 N5ad54fc1828045e98fe27a2826657364
    5 N6ab26a822e914080a04040ab702975c6
    6 N838ce4ad28da4ebcb805ba8c6ff5ed26
    7 Nbd0415ca22324ed7a26b3fc8a9123194
    8 Ned107e4427a74b69a71801c23f744615
    9 Nf6de99e5b94142ca8106fab82a4726f0
    10 Nf9acf05847f947ddbb9ebc90d2f937d4
    11 anzsrc-for:06
    12 anzsrc-for:11
    13 schema:author Ncdf0b541cfe2415d849cbf286da3a584
    14 schema:citation sg:pub.10.1007/3-540-12689-9_129
    15 sg:pub.10.1038/nature03062
    16 sg:pub.10.1038/nature04489
    17 sg:pub.10.1038/nature05329
    18 sg:pub.10.1038/nature06862
    19 sg:pub.10.1038/nature06884
    20 sg:pub.10.1038/nature07484
    21 sg:pub.10.1038/nature07517
    22 sg:pub.10.1038/nature07744
    23 sg:pub.10.1038/ng.128
    24 sg:pub.10.1038/ng.2007.48
    25 sg:pub.10.1038/ng.2007.9
    26 sg:pub.10.1038/ng.236
    27 sg:pub.10.1038/ng.238
    28 sg:pub.10.1038/ng1416
    29 sg:pub.10.1038/ng1562
    30 sg:pub.10.1038/ng2046
    31 sg:pub.10.1038/nmeth.1179
    32 sg:pub.10.1038/nmeth.1276
    33 schema:datePublished 2009-08-30
    34 schema:datePublishedReg 2009-08-30
    35 schema:description Evan Eichler and colleagues have developed an algorithm called mrFAST to map short, next-generation sequence reads across the genome that allows for the accurate prediction of copy-number variation.
    36 schema:genre article
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N16b9b2fa087b4ce3bc7aeb6a5e6e5a07
    39 N56e891c114df44f7a885cbe5ccb70270
    40 sg:journal.1103138
    41 schema:keywords Eichler
    42 accurate prediction
    43 algorithm
    44 colleagues
    45 copy number variations
    46 duplication map
    47 genome
    48 maps
    49 next-generation sequences
    50 next-generation sequencing
    51 number
    52 prediction
    53 sequence
    54 sequencing
    55 variation
    56 schema:name Personalized copy number and segmental duplication maps using next-generation sequencing
    57 schema:pagination 1061-1067
    58 schema:productId N0f51af7ad1274200b48f36115a262aad
    59 N450ce0e06f2a48b088c4196724d6d839
    60 Nafe8e92f4c704e44bf1ffe0d5f7b7be7
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035989827
    62 https://doi.org/10.1038/ng.437
    63 schema:sdDatePublished 2022-12-01T06:28
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Nb73531a5e80542ee86f83977e473ac16
    66 schema:url https://doi.org/10.1038/ng.437
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N05b7a676ebab473fb6c7193f3dbbf17b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Algorithms
    72 rdf:type schema:DefinedTerm
    73 N087a79649f234d978bacc7997da7098e rdf:first sg:person.01245031315.82
    74 rdf:rest Ndaf0a9de963842bc9370fcd897c13e6a
    75 N0f51af7ad1274200b48f36115a262aad schema:name dimensions_id
    76 schema:value pub.1035989827
    77 rdf:type schema:PropertyValue
    78 N16b9b2fa087b4ce3bc7aeb6a5e6e5a07 schema:volumeNumber 41
    79 rdf:type schema:PublicationVolume
    80 N31ad85b7c71747fbb118656f58153540 rdf:first sg:person.0775754503.55
    81 rdf:rest N35032a05e49b49a9a8f08a6b6bb260a0
    82 N3492ef5f0a7143a5b2e9f1f7f862e9e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Genomic Library
    84 rdf:type schema:DefinedTerm
    85 N35032a05e49b49a9a8f08a6b6bb260a0 rdf:first sg:person.01344771434.18
    86 rdf:rest Ncda63755774544d9b4f8c113c5c1ec58
    87 N40893b1455e842d98f8b35b24522c1a3 rdf:first sg:person.01145707302.20
    88 rdf:rest N7bfafdde35f542d38f25a929f036148a
    89 N450ce0e06f2a48b088c4196724d6d839 schema:name pubmed_id
    90 schema:value 19718026
    91 rdf:type schema:PropertyValue
    92 N455254f5bdc544a2b7019e7bebe63844 rdf:first sg:person.01132015666.77
    93 rdf:rest N40893b1455e842d98f8b35b24522c1a3
    94 N4959e2a6f69c493d983e40226e113c8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Humans
    96 rdf:type schema:DefinedTerm
    97 N56e891c114df44f7a885cbe5ccb70270 schema:issueNumber 10
    98 rdf:type schema:PublicationIssue
    99 N5ad54fc1828045e98fe27a2826657364 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Gene Duplication
    101 rdf:type schema:DefinedTerm
    102 N6ab26a822e914080a04040ab702975c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name DNA
    104 rdf:type schema:DefinedTerm
    105 N7bfafdde35f542d38f25a929f036148a rdf:first sg:person.0705101106.89
    106 rdf:rest rdf:nil
    107 N838ce4ad28da4ebcb805ba8c6ff5ed26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Genome, Human
    109 rdf:type schema:DefinedTerm
    110 N85e65652c38d479d875a4d6e478f2a46 rdf:first sg:person.0621011335.80
    111 rdf:rest Na53a460bbf8b4ab2a48468c906fd46aa
    112 Na53a460bbf8b4ab2a48468c906fd46aa rdf:first sg:person.01142460404.00
    113 rdf:rest N455254f5bdc544a2b7019e7bebe63844
    114 Nafe8e92f4c704e44bf1ffe0d5f7b7be7 schema:name doi
    115 schema:value 10.1038/ng.437
    116 rdf:type schema:PropertyValue
    117 Nb73531a5e80542ee86f83977e473ac16 schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 Nbd0415ca22324ed7a26b3fc8a9123194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Chromosome Mapping
    121 rdf:type schema:DefinedTerm
    122 Ncda63755774544d9b4f8c113c5c1ec58 rdf:first sg:person.01113740435.15
    123 rdf:rest Nf1862624dc744d5c824e7168eefb1e0f
    124 Ncdf0b541cfe2415d849cbf286da3a584 rdf:first sg:person.0737070412.26
    125 rdf:rest Nd16787b044a041b5a56e9f06301548e5
    126 Nd16787b044a041b5a56e9f06301548e5 rdf:first sg:person.01341130334.03
    127 rdf:rest N31ad85b7c71747fbb118656f58153540
    128 Ndaf0a9de963842bc9370fcd897c13e6a rdf:first sg:person.01266240154.24
    129 rdf:rest N85e65652c38d479d875a4d6e478f2a46
    130 Ned107e4427a74b69a71801c23f744615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Gene Dosage
    132 rdf:type schema:DefinedTerm
    133 Nf1862624dc744d5c824e7168eefb1e0f rdf:first sg:person.0701340666.44
    134 rdf:rest N087a79649f234d978bacc7997da7098e
    135 Nf6de99e5b94142ca8106fab82a4726f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Sequence Analysis, DNA
    137 rdf:type schema:DefinedTerm
    138 Nf9acf05847f947ddbb9ebc90d2f937d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Polymorphism, Genetic
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Biological Sciences
    143 rdf:type schema:DefinedTerm
    144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Medical and Health Sciences
    146 rdf:type schema:DefinedTerm
    147 sg:grant.2436673 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.437
    148 rdf:type schema:MonetaryGrant
    149 sg:grant.2529420 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.437
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1103138 schema:issn 1061-4036
    152 1546-1718
    153 schema:name Nature Genetics
    154 schema:publisher Springer Nature
    155 rdf:type schema:Periodical
    156 sg:person.01113740435.15 schema:affiliation grid-institutes:grid.34477.33
    157 schema:familyName Antonacci
    158 schema:givenName Francesca
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113740435.15
    160 rdf:type schema:Person
    161 sg:person.01132015666.77 schema:affiliation grid-institutes:grid.61971.38
    162 schema:familyName Sahinalp
    163 schema:givenName S Cenk
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132015666.77
    165 rdf:type schema:Person
    166 sg:person.01142460404.00 schema:affiliation grid-institutes:grid.147455.6
    167 schema:familyName Mutlu
    168 schema:givenName Onur
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142460404.00
    170 rdf:type schema:Person
    171 sg:person.01145707302.20 schema:affiliation grid-institutes:grid.39382.33
    172 schema:familyName Gibbs
    173 schema:givenName Richard A
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145707302.20
    175 rdf:type schema:Person
    176 sg:person.01245031315.82 schema:affiliation grid-institutes:grid.34477.33
    177 schema:familyName Kitzman
    178 schema:givenName Jacob O
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245031315.82
    180 rdf:type schema:Person
    181 sg:person.01266240154.24 schema:affiliation grid-institutes:grid.34477.33
    182 schema:familyName Baker
    183 schema:givenName Carl
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266240154.24
    185 rdf:type schema:Person
    186 sg:person.01341130334.03 schema:affiliation grid-institutes:grid.34477.33
    187 schema:familyName Kidd
    188 schema:givenName Jeffrey M
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341130334.03
    190 rdf:type schema:Person
    191 sg:person.01344771434.18 schema:affiliation grid-institutes:grid.34477.33
    192 schema:familyName Aksay
    193 schema:givenName Gozde
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344771434.18
    195 rdf:type schema:Person
    196 sg:person.0621011335.80 schema:affiliation grid-institutes:grid.34477.33
    197 schema:familyName Malig
    198 schema:givenName Maika
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621011335.80
    200 rdf:type schema:Person
    201 sg:person.0701340666.44 schema:affiliation grid-institutes:grid.61971.38
    202 schema:familyName Hormozdiari
    203 schema:givenName Fereydoun
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701340666.44
    205 rdf:type schema:Person
    206 sg:person.0705101106.89 schema:affiliation grid-institutes:grid.413575.1
    207 schema:familyName Eichler
    208 schema:givenName Evan E
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705101106.89
    210 rdf:type schema:Person
    211 sg:person.0737070412.26 schema:affiliation grid-institutes:grid.413575.1
    212 schema:familyName Alkan
    213 schema:givenName Can
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737070412.26
    215 rdf:type schema:Person
    216 sg:person.0775754503.55 schema:affiliation grid-institutes:grid.507636.1
    217 schema:familyName Marques-Bonet
    218 schema:givenName Tomas
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775754503.55
    220 rdf:type schema:Person
    221 sg:pub.10.1007/3-540-12689-9_129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011083906
    222 https://doi.org/10.1007/3-540-12689-9_129
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nature03062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030291886
    225 https://doi.org/10.1038/nature03062
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nature04489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021694182
    228 https://doi.org/10.1038/nature04489
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nature05329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925490
    231 https://doi.org/10.1038/nature05329
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nature06862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038272226
    234 https://doi.org/10.1038/nature06862
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nature06884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047672670
    237 https://doi.org/10.1038/nature06884
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nature07484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016969839
    240 https://doi.org/10.1038/nature07484
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
    243 https://doi.org/10.1038/nature07517
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nature07744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003544206
    246 https://doi.org/10.1038/nature07744
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/ng.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047246435
    249 https://doi.org/10.1038/ng.128
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/ng.2007.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006402622
    252 https://doi.org/10.1038/ng.2007.48
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/ng.2007.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008279336
    255 https://doi.org/10.1038/ng.2007.9
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/ng.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001828025
    258 https://doi.org/10.1038/ng.236
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/ng.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047420273
    261 https://doi.org/10.1038/ng.238
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/ng1416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002767840
    264 https://doi.org/10.1038/ng1416
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/ng1562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014017119
    267 https://doi.org/10.1038/ng1562
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/ng2046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039814739
    270 https://doi.org/10.1038/ng2046
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/nmeth.1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001773338
    273 https://doi.org/10.1038/nmeth.1179
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/nmeth.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025333243
    276 https://doi.org/10.1038/nmeth.1276
    277 rdf:type schema:CreativeWork
    278 grid-institutes:grid.147455.6 schema:alternateName Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
    279 schema:name Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
    280 rdf:type schema:Organization
    281 grid-institutes:grid.34477.33 schema:alternateName Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
    282 schema:name Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
    283 rdf:type schema:Organization
    284 grid-institutes:grid.39382.33 schema:alternateName Baylor College of Medicine, Houston, Texas, USA
    285 schema:name Baylor College of Medicine, Houston, Texas, USA
    286 rdf:type schema:Organization
    287 grid-institutes:grid.413575.1 schema:alternateName Howard Hughes Medical Institute, Seattle, Washington, USA
    288 schema:name Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
    289 Howard Hughes Medical Institute, Seattle, Washington, USA
    290 rdf:type schema:Organization
    291 grid-institutes:grid.507636.1 schema:alternateName Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Catalonia, Spain
    292 schema:name Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
    293 Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Catalonia, Spain
    294 rdf:type schema:Organization
    295 grid-institutes:grid.61971.38 schema:alternateName School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada
    296 schema:name School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada
    297 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...