Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01

AUTHORS

Thomas J Hoffmann, Georg B Ehret, Priyanka Nandakumar, Dilrini Ranatunga, Catherine Schaefer, Pui-Yan Kwok, Carlos Iribarren, Aravinda Chakravarti, Neil Risch

ABSTRACT

Longitudinal electronic health records on 99,785 Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort individuals provided 1,342,814 systolic and diastolic blood pressure measurements for a genome-wide association study on long-term average systolic, diastolic, and pulse pressure. We identified 39 new loci among 75 genome-wide significant loci (P ≤ 5 × 10-8), with most replicating in the combined International Consortium for Blood Pressure (ICBP; n = 69,396) and UK Biobank (UKB; n = 152,081) studies. Combining GERA with ICBP yielded 36 additional new loci, with most replicating in UKB. Combining all three studies (n = 321,262) yielded 241 additional genome-wide significant loci, although no replication sample was available for these. All associated loci explained 2.9%, 2.5%, and 3.1% of variation in systolic, diastolic, and pulse pressure, respectively, in GERA non-Hispanic whites. Using multiple blood pressure measurements in GERA doubled the variance explained. A normalized risk score was associated with time to onset of hypertension (hazards ratio = 1.18, P = 8.2 × 10-45). Expression quantitative trait locus analysis of blood pressure loci showed enrichment in aorta and tibial artery. More... »

PAGES

54-64

References to SciGraph publications

  • 2011-10. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk in NATURE
  • 2016-08. The genetic architecture of type 2 diabetes in NATURE
  • 2013-11. Discovery and refinement of loci associated with lipid levels in NATURE GENETICS
  • 2011-06. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians in NATURE GENETICS
  • 2012-02. A linear complexity phasing method for thousands of genomes in NATURE METHODS
  • 2009-06. Genome-wide association study of blood pressure and hypertension in NATURE GENETICS
  • 2009-01. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources in NATURE PROTOCOLS
  • 2012-08. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing in NATURE GENETICS
  • 2015-12. Second-generation PLINK: rising to the challenge of larger and richer datasets in GIGASCIENCE
  • 2007-09. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness in BMC MEDICAL GENETICS
  • 2009-06. Genome-wide association study identifies eight loci associated with blood pressure in NATURE GENETICS
  • 2016-10. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals in NATURE GENETICS
  • 2014-12. Synthesis of 53 tissue and cell line expression QTL datasets reveals master eQTLs in BMC GENOMICS
  • 2016-10. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension in NATURE GENETICS
  • 2011-10. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure in NATURE GENETICS
  • 2015-03. Efficient Bayesian mixed-model analysis increases association power in large cohorts in NATURE GENETICS
  • 2015-11. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation in NATURE GENETICS
  • 2016-10. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci in NATURE GENETICS
  • 2010-07. Genotype imputation for genome-wide association studies in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ng.3715

    DOI

    http://dx.doi.org/10.1038/ng.3715

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003789139

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27841878


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Blood Pressure", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cohort Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electronic Health Records", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ethnic Groups", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Predisposition to Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hypertension", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Longitudinal Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Meta-Analysis as Topic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prevalence", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, San Francisco", 
              "id": "https://www.grid.ac/institutes/grid.266102.1", 
              "name": [
                "Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, USA.", 
                "Institute for Human Genetics, University of California at San Francisco, San Francisco, California, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hoffmann", 
            "givenName": "Thomas J", 
            "id": "sg:person.016665367762.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665367762.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Geneva", 
              "id": "https://www.grid.ac/institutes/grid.8591.5", 
              "name": [
                "Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, USA.", 
                "Cardiology, Department of Specialties of Internal Medicine, University of Geneva, Geneva, Switzerland."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ehret", 
            "givenName": "Georg B", 
            "id": "sg:person.01351041437.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351041437.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nandakumar", 
            "givenName": "Priyanka", 
            "id": "sg:person.01300772372.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300772372.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kaiser Permanente", 
              "id": "https://www.grid.ac/institutes/grid.280062.e", 
              "name": [
                "Kaiser Permanente Northern California Division of Research, Oakland, California, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ranatunga", 
            "givenName": "Dilrini", 
            "id": "sg:person.01270657321.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270657321.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kaiser Permanente", 
              "id": "https://www.grid.ac/institutes/grid.280062.e", 
              "name": [
                "Kaiser Permanente Northern California Division of Research, Oakland, California, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schaefer", 
            "givenName": "Catherine", 
            "id": "sg:person.01162726073.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162726073.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Francisco", 
              "id": "https://www.grid.ac/institutes/grid.266102.1", 
              "name": [
                "Institute for Human Genetics, University of California at San Francisco, San Francisco, California, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kwok", 
            "givenName": "Pui-Yan", 
            "id": "sg:person.01221224024.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221224024.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kaiser Permanente", 
              "id": "https://www.grid.ac/institutes/grid.280062.e", 
              "name": [
                "Kaiser Permanente Northern California Division of Research, Oakland, California, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iribarren", 
            "givenName": "Carlos", 
            "id": "sg:person.01356160251.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356160251.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakravarti", 
            "givenName": "Aravinda", 
            "id": "sg:person.01221734637.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221734637.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kaiser Permanente", 
              "id": "https://www.grid.ac/institutes/grid.280062.e", 
              "name": [
                "Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, USA.", 
                "Institute for Human Genetics, University of California at San Francisco, San Francisco, California, USA.", 
                "Kaiser Permanente Northern California Division of Research, Oakland, California, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Risch", 
            "givenName": "Neil", 
            "id": "sg:person.0747522145.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747522145.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature10405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000059117", 
              "https://doi.org/10.1038/nature10405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.178616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000238299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.178616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000238299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002640757", 
              "https://doi.org/10.1038/nmeth.1785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circulationaha.109.904664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002719199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2015.11.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002855443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2015.11.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002855443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2014.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006164862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007132667", 
              "https://doi.org/10.1038/ng.3667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007162866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2010.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009497006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2011.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009526716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009739594", 
              "https://doi.org/10.1038/nrg2796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009739594", 
              "https://doi.org/10.1038/nrg2796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1001177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009880558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0808358106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011903867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.135350.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012073457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012851637", 
              "https://doi.org/10.1038/ng.3405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/jama.2012.339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012909968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.178905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013949906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.178905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013949906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2350-8-s1-s3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016002729", 
              "https://doi.org/10.1186/1471-2350-8-s1-s3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2013.12.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017085500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygeno.2011.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017671517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018142595", 
              "https://doi.org/10.1038/ng.384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018142595", 
              "https://doi.org/10.1038/ng.384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/519795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019061180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019881777", 
              "https://doi.org/10.1186/1471-2164-15-532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2011.10.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020893402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0006-341x.1999.00997.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021081768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022521320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/dds555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023291124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/ede.0b013e318181b865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026185414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/ede.0b013e318181b865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026185414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2013.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026807637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.1.5323.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029266802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddr092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029314831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1262110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029707840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029723318", 
              "https://doi.org/10.1038/ng.2354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circgenetics.113.000420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031002046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circgenetics.113.000420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031002046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2011.04.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031378484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031899225", 
              "https://doi.org/10.1038/ng.2797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/hypertensionaha.113.01148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033080437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/hypertensionaha.113.01148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033080437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hjh.0b013e3283406927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033484878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hjh.0b013e3283406927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033484878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hjh.0b013e3283406927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033484878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.1001779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033632930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2014.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034177087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature18642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036558635", 
              "https://doi.org/10.1038/nature18642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.111.001198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037455212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.111.001198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037455212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2014.00107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037892750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13742-015-0047-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037894462", 
              "https://doi.org/10.1186/s13742-015-0047-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2008.211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039987283", 
              "https://doi.org/10.1038/nprot.2008.211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.922", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041218385", 
              "https://doi.org/10.1038/ng.922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2014.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041269341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041461900", 
              "https://doi.org/10.1038/ng.361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041461900", 
              "https://doi.org/10.1038/ng.361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041665159", 
              "https://doi.org/10.1038/ng.3190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5888/pcd13.150348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041792301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043446290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.2165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043799311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.2165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043799311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygeno.2011.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044009783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044515196", 
              "https://doi.org/10.1038/ng.3654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2009.09.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046488040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkn923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047610281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049121823", 
              "https://doi.org/10.1038/ng.3660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052960118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053345913", 
              "https://doi.org/10.1038/ng.834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/scitranslmed.3001807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062686900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078806062", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-01", 
        "datePublishedReg": "2017-01-01", 
        "description": "Longitudinal electronic health records on 99,785 Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort individuals provided 1,342,814 systolic and diastolic blood pressure measurements for a genome-wide association study on long-term average systolic, diastolic, and pulse pressure. We identified 39 new loci among 75 genome-wide significant loci (P \u2264 5 \u00d7 10-8), with most replicating in the combined International Consortium for Blood Pressure (ICBP; n = 69,396) and UK Biobank (UKB; n = 152,081) studies. Combining GERA with ICBP yielded 36 additional new loci, with most replicating in UKB. Combining all three studies (n = 321,262) yielded 241 additional genome-wide significant loci, although no replication sample was available for these. All associated loci explained 2.9%, 2.5%, and 3.1% of variation in systolic, diastolic, and pulse pressure, respectively, in GERA non-Hispanic whites. Using multiple blood pressure measurements in GERA doubled the variance explained. A normalized risk score was associated with time to onset of hypertension (hazards ratio = 1.18, P = 8.2 \u00d7 10-45). Expression quantitative trait locus analysis of blood pressure loci showed enrichment in aorta and tibial artery.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/ng.3715", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2786773", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4244365", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2669164", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4576591", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1103138", 
            "issn": [
              "1061-4036", 
              "1546-1718"
            ], 
            "name": "Nature Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "49"
          }
        ], 
        "name": "Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation", 
        "pagination": "54-64", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "120d1b368a25207ae8397b49a43a9ebc033ad9ddcaee5a6cf1d81ef32d625c7c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27841878"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9216904"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ng.3715"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003789139"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ng.3715", 
          "https://app.dimensions.ai/details/publication/pub.1003789139"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000549.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/ng/journal/v49/n1/full/ng.3715.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng.3715'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng.3715'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng.3715'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng.3715'


     

    This table displays all metadata directly associated to this object as RDF triples.

    420 TRIPLES      21 PREDICATES      108 URIs      39 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ng.3715 schema:about N0ecd724fe63a405bbd648c2bc3dbdf25
    2 N0f6d6e577a5c452f9a53baf5dad74c40
    3 N274aed52c90b43b3801866a1a46fd42b
    4 N34ae630789bd472e97cee52cede1247c
    5 N3819414f427b44508119198313741516
    6 N599986b484ff49f6a427bc3467b6f72e
    7 N6fc8b4b2a1734f76a866baafe6ed0ae0
    8 N6fdfbc56666b4b15a8531b706790778e
    9 N762ad47e95ca40589df81781faafc405
    10 N82ed5a2cf89e483eb185b1358a3f9d3b
    11 N8a3c5ace0c844f14918a8c4dc61df523
    12 N92fb4d7010a449aeacb0a5d4b00c57a4
    13 N99844abcd6364c0695d8ad0df7934f47
    14 Nbb8550f4de034aa69512bfaa108086c7
    15 Nbc84c49397144f7da0e10946d769b2b2
    16 Nccb05d591f204e4badffb31bd1916f91
    17 Nd86ce45aaad0452f96806eac62f2a652
    18 Ndc360bbcb84249abbd4c492d2fe3a68c
    19 anzsrc-for:06
    20 anzsrc-for:0604
    21 schema:author N58487d713c024e9ca3d057f931266876
    22 schema:citation sg:pub.10.1038/nature10405
    23 sg:pub.10.1038/nature18642
    24 sg:pub.10.1038/ng.2354
    25 sg:pub.10.1038/ng.2797
    26 sg:pub.10.1038/ng.3190
    27 sg:pub.10.1038/ng.3405
    28 sg:pub.10.1038/ng.361
    29 sg:pub.10.1038/ng.3654
    30 sg:pub.10.1038/ng.3660
    31 sg:pub.10.1038/ng.3667
    32 sg:pub.10.1038/ng.384
    33 sg:pub.10.1038/ng.834
    34 sg:pub.10.1038/ng.922
    35 sg:pub.10.1038/nmeth.1785
    36 sg:pub.10.1038/nprot.2008.211
    37 sg:pub.10.1038/nrg2796
    38 sg:pub.10.1186/1471-2164-15-532
    39 sg:pub.10.1186/1471-2350-8-s1-s3
    40 sg:pub.10.1186/s13742-015-0047-8
    41 https://app.dimensions.ai/details/publication/pub.1078806062
    42 https://doi.org/10.1001/jama.2012.339
    43 https://doi.org/10.1002/sim.2165
    44 https://doi.org/10.1016/j.ajhg.2009.09.017
    45 https://doi.org/10.1016/j.ajhg.2010.11.011
    46 https://doi.org/10.1016/j.ajhg.2011.02.002
    47 https://doi.org/10.1016/j.ajhg.2011.04.014
    48 https://doi.org/10.1016/j.ajhg.2011.10.013
    49 https://doi.org/10.1016/j.ajhg.2013.07.010
    50 https://doi.org/10.1016/j.ajhg.2013.12.016
    51 https://doi.org/10.1016/j.ajhg.2014.05.010
    52 https://doi.org/10.1016/j.ajhg.2014.06.002
    53 https://doi.org/10.1016/j.ajhg.2014.11.011
    54 https://doi.org/10.1016/j.ajhg.2015.11.022
    55 https://doi.org/10.1016/j.ygeno.2011.04.005
    56 https://doi.org/10.1016/j.ygeno.2011.08.007
    57 https://doi.org/10.1073/pnas.0808358106
    58 https://doi.org/10.1086/519795
    59 https://doi.org/10.1093/bioinformatics/btu416
    60 https://doi.org/10.1093/hmg/ddr092
    61 https://doi.org/10.1093/hmg/dds555
    62 https://doi.org/10.1093/nar/gkn923
    63 https://doi.org/10.1093/nar/gkr917
    64 https://doi.org/10.1097/ede.0b013e318181b865
    65 https://doi.org/10.1097/hjh.0b013e3283406927
    66 https://doi.org/10.1101/gr.135350.111
    67 https://doi.org/10.1111/j.0006-341x.1999.00997.x
    68 https://doi.org/10.1126/science.1262110
    69 https://doi.org/10.1126/scitranslmed.3001807
    70 https://doi.org/10.1136/bmj.1.5323.75
    71 https://doi.org/10.1161/circgenetics.113.000420
    72 https://doi.org/10.1161/circulationaha.109.904664
    73 https://doi.org/10.1161/hypertensionaha.113.01148
    74 https://doi.org/10.1371/journal.pgen.1000529
    75 https://doi.org/10.1371/journal.pgen.1000888
    76 https://doi.org/10.1371/journal.pgen.1001177
    77 https://doi.org/10.1371/journal.pmed.1001779
    78 https://doi.org/10.1534/g3.111.001198
    79 https://doi.org/10.1534/genetics.115.178616
    80 https://doi.org/10.1534/genetics.115.178905
    81 https://doi.org/10.3389/fgene.2014.00107
    82 https://doi.org/10.5888/pcd13.150348
    83 schema:datePublished 2017-01
    84 schema:datePublishedReg 2017-01-01
    85 schema:description Longitudinal electronic health records on 99,785 Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort individuals provided 1,342,814 systolic and diastolic blood pressure measurements for a genome-wide association study on long-term average systolic, diastolic, and pulse pressure. We identified 39 new loci among 75 genome-wide significant loci (P ≤ 5 × 10<sup>-8</sup>), with most replicating in the combined International Consortium for Blood Pressure (ICBP; n = 69,396) and UK Biobank (UKB; n = 152,081) studies. Combining GERA with ICBP yielded 36 additional new loci, with most replicating in UKB. Combining all three studies (n = 321,262) yielded 241 additional genome-wide significant loci, although no replication sample was available for these. All associated loci explained 2.9%, 2.5%, and 3.1% of variation in systolic, diastolic, and pulse pressure, respectively, in GERA non-Hispanic whites. Using multiple blood pressure measurements in GERA doubled the variance explained. A normalized risk score was associated with time to onset of hypertension (hazards ratio = 1.18, P = 8.2 × 10<sup>-45</sup>). Expression quantitative trait locus analysis of blood pressure loci showed enrichment in aorta and tibial artery.
    86 schema:genre research_article
    87 schema:inLanguage en
    88 schema:isAccessibleForFree true
    89 schema:isPartOf N65e0e82e64734c89b370ded37ea1bc80
    90 Nb2cf7b85191f448982e77dac975d3e3f
    91 sg:journal.1103138
    92 schema:name Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation
    93 schema:pagination 54-64
    94 schema:productId N357257545c474a5d9a3f5edf8af27dfa
    95 N3b7232f1ca584bff99c2afb81acc45c8
    96 N4e84805e4e114149b79b739a7ef164d5
    97 N8cf6c3be6c90472db587157d819d8c44
    98 N9a07c30e56ba4e7da4ae49e178e4dda4
    99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003789139
    100 https://doi.org/10.1038/ng.3715
    101 schema:sdDatePublished 2019-04-11T00:22
    102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    103 schema:sdPublisher Nf172df484386459abbecb6caf3d26696
    104 schema:url http://www.nature.com/ng/journal/v49/n1/full/ng.3715.html
    105 sgo:license sg:explorer/license/
    106 sgo:sdDataset articles
    107 rdf:type schema:ScholarlyArticle
    108 N0ecd724fe63a405bbd648c2bc3dbdf25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Ethnic Groups
    110 rdf:type schema:DefinedTerm
    111 N0f6d6e577a5c452f9a53baf5dad74c40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Genetic Loci
    113 rdf:type schema:DefinedTerm
    114 N274aed52c90b43b3801866a1a46fd42b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Male
    116 rdf:type schema:DefinedTerm
    117 N32f0a6cf50434057a69b8f02e7c252f9 schema:name Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, USA.
    118 rdf:type schema:Organization
    119 N34ae630789bd472e97cee52cede1247c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Meta-Analysis as Topic
    121 rdf:type schema:DefinedTerm
    122 N357257545c474a5d9a3f5edf8af27dfa schema:name nlm_unique_id
    123 schema:value 9216904
    124 rdf:type schema:PropertyValue
    125 N3819414f427b44508119198313741516 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Female
    127 rdf:type schema:DefinedTerm
    128 N381de2938c1647b18137b249c66cd4cd rdf:first sg:person.01221734637.59
    129 rdf:rest Nbfeefc35dd054f34a1cfdbffbc9a88dd
    130 N3b173315d9ac476cb0f2b37b7bb9c322 rdf:first sg:person.01300772372.22
    131 rdf:rest Ndb3edfba96e942ce8a382a9178666f86
    132 N3b7232f1ca584bff99c2afb81acc45c8 schema:name readcube_id
    133 schema:value 120d1b368a25207ae8397b49a43a9ebc033ad9ddcaee5a6cf1d81ef32d625c7c
    134 rdf:type schema:PropertyValue
    135 N4e84805e4e114149b79b739a7ef164d5 schema:name pubmed_id
    136 schema:value 27841878
    137 rdf:type schema:PropertyValue
    138 N58487d713c024e9ca3d057f931266876 rdf:first sg:person.016665367762.69
    139 rdf:rest N98307071417644949a27eb0bf634cc05
    140 N599986b484ff49f6a427bc3467b6f72e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Genetic Predisposition to Disease
    142 rdf:type schema:DefinedTerm
    143 N65e0e82e64734c89b370ded37ea1bc80 schema:volumeNumber 49
    144 rdf:type schema:PublicationVolume
    145 N6fc8b4b2a1734f76a866baafe6ed0ae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Phenotype
    147 rdf:type schema:DefinedTerm
    148 N6fdfbc56666b4b15a8531b706790778e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Prevalence
    150 rdf:type schema:DefinedTerm
    151 N71a9683b5382421e941bc87e9de7355c rdf:first sg:person.01162726073.14
    152 rdf:rest Nd4213322c0964cca9a95936053575701
    153 N762ad47e95ca40589df81781faafc405 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Middle Aged
    155 rdf:type schema:DefinedTerm
    156 N77e2135714df4e7aa5fc5456c0a4d776 schema:name Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, USA.
    157 rdf:type schema:Organization
    158 N82ed5a2cf89e483eb185b1358a3f9d3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Humans
    160 rdf:type schema:DefinedTerm
    161 N8a3c5ace0c844f14918a8c4dc61df523 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Longitudinal Studies
    163 rdf:type schema:DefinedTerm
    164 N8cf6c3be6c90472db587157d819d8c44 schema:name dimensions_id
    165 schema:value pub.1003789139
    166 rdf:type schema:PropertyValue
    167 N92fb4d7010a449aeacb0a5d4b00c57a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Hypertension
    169 rdf:type schema:DefinedTerm
    170 N98307071417644949a27eb0bf634cc05 rdf:first sg:person.01351041437.40
    171 rdf:rest N3b173315d9ac476cb0f2b37b7bb9c322
    172 N99844abcd6364c0695d8ad0df7934f47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Cohort Studies
    174 rdf:type schema:DefinedTerm
    175 N9a07c30e56ba4e7da4ae49e178e4dda4 schema:name doi
    176 schema:value 10.1038/ng.3715
    177 rdf:type schema:PropertyValue
    178 Nb0d7389859e94317b53c623f8ad98bd3 rdf:first sg:person.01356160251.42
    179 rdf:rest N381de2938c1647b18137b249c66cd4cd
    180 Nb2cf7b85191f448982e77dac975d3e3f schema:issueNumber 1
    181 rdf:type schema:PublicationIssue
    182 Nbb8550f4de034aa69512bfaa108086c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Electronic Health Records
    184 rdf:type schema:DefinedTerm
    185 Nbc84c49397144f7da0e10946d769b2b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Blood Pressure
    187 rdf:type schema:DefinedTerm
    188 Nbfeefc35dd054f34a1cfdbffbc9a88dd rdf:first sg:person.0747522145.11
    189 rdf:rest rdf:nil
    190 Nccb05d591f204e4badffb31bd1916f91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Genome-Wide Association Study
    192 rdf:type schema:DefinedTerm
    193 Nd4213322c0964cca9a95936053575701 rdf:first sg:person.01221224024.09
    194 rdf:rest Nb0d7389859e94317b53c623f8ad98bd3
    195 Nd86ce45aaad0452f96806eac62f2a652 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Adult
    197 rdf:type schema:DefinedTerm
    198 Ndb3edfba96e942ce8a382a9178666f86 rdf:first sg:person.01270657321.22
    199 rdf:rest N71a9683b5382421e941bc87e9de7355c
    200 Ndc360bbcb84249abbd4c492d2fe3a68c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Polymorphism, Single Nucleotide
    202 rdf:type schema:DefinedTerm
    203 Nf172df484386459abbecb6caf3d26696 schema:name Springer Nature - SN SciGraph project
    204 rdf:type schema:Organization
    205 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    206 schema:name Biological Sciences
    207 rdf:type schema:DefinedTerm
    208 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    209 schema:name Genetics
    210 rdf:type schema:DefinedTerm
    211 sg:grant.2669164 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.3715
    212 rdf:type schema:MonetaryGrant
    213 sg:grant.2786773 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.3715
    214 rdf:type schema:MonetaryGrant
    215 sg:grant.4244365 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.3715
    216 rdf:type schema:MonetaryGrant
    217 sg:grant.4576591 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.3715
    218 rdf:type schema:MonetaryGrant
    219 sg:journal.1103138 schema:issn 1061-4036
    220 1546-1718
    221 schema:name Nature Genetics
    222 rdf:type schema:Periodical
    223 sg:person.01162726073.14 schema:affiliation https://www.grid.ac/institutes/grid.280062.e
    224 schema:familyName Schaefer
    225 schema:givenName Catherine
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162726073.14
    227 rdf:type schema:Person
    228 sg:person.01221224024.09 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
    229 schema:familyName Kwok
    230 schema:givenName Pui-Yan
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221224024.09
    232 rdf:type schema:Person
    233 sg:person.01221734637.59 schema:affiliation N32f0a6cf50434057a69b8f02e7c252f9
    234 schema:familyName Chakravarti
    235 schema:givenName Aravinda
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221734637.59
    237 rdf:type schema:Person
    238 sg:person.01270657321.22 schema:affiliation https://www.grid.ac/institutes/grid.280062.e
    239 schema:familyName Ranatunga
    240 schema:givenName Dilrini
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270657321.22
    242 rdf:type schema:Person
    243 sg:person.01300772372.22 schema:affiliation N77e2135714df4e7aa5fc5456c0a4d776
    244 schema:familyName Nandakumar
    245 schema:givenName Priyanka
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300772372.22
    247 rdf:type schema:Person
    248 sg:person.01351041437.40 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
    249 schema:familyName Ehret
    250 schema:givenName Georg B
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351041437.40
    252 rdf:type schema:Person
    253 sg:person.01356160251.42 schema:affiliation https://www.grid.ac/institutes/grid.280062.e
    254 schema:familyName Iribarren
    255 schema:givenName Carlos
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356160251.42
    257 rdf:type schema:Person
    258 sg:person.016665367762.69 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
    259 schema:familyName Hoffmann
    260 schema:givenName Thomas J
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665367762.69
    262 rdf:type schema:Person
    263 sg:person.0747522145.11 schema:affiliation https://www.grid.ac/institutes/grid.280062.e
    264 schema:familyName Risch
    265 schema:givenName Neil
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747522145.11
    267 rdf:type schema:Person
    268 sg:pub.10.1038/nature10405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000059117
    269 https://doi.org/10.1038/nature10405
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nature18642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036558635
    272 https://doi.org/10.1038/nature18642
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/ng.2354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029723318
    275 https://doi.org/10.1038/ng.2354
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/ng.2797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031899225
    278 https://doi.org/10.1038/ng.2797
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/ng.3190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041665159
    281 https://doi.org/10.1038/ng.3190
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/ng.3405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012851637
    284 https://doi.org/10.1038/ng.3405
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/ng.361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041461900
    287 https://doi.org/10.1038/ng.361
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/ng.3654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044515196
    290 https://doi.org/10.1038/ng.3654
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/ng.3660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049121823
    293 https://doi.org/10.1038/ng.3660
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/ng.3667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007132667
    296 https://doi.org/10.1038/ng.3667
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/ng.384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018142595
    299 https://doi.org/10.1038/ng.384
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/ng.834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053345913
    302 https://doi.org/10.1038/ng.834
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/ng.922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041218385
    305 https://doi.org/10.1038/ng.922
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nmeth.1785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002640757
    308 https://doi.org/10.1038/nmeth.1785
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
    311 https://doi.org/10.1038/nprot.2008.211
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/nrg2796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009739594
    314 https://doi.org/10.1038/nrg2796
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1186/1471-2164-15-532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019881777
    317 https://doi.org/10.1186/1471-2164-15-532
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1186/1471-2350-8-s1-s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016002729
    320 https://doi.org/10.1186/1471-2350-8-s1-s3
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1186/s13742-015-0047-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037894462
    323 https://doi.org/10.1186/s13742-015-0047-8
    324 rdf:type schema:CreativeWork
    325 https://app.dimensions.ai/details/publication/pub.1078806062 schema:CreativeWork
    326 https://doi.org/10.1001/jama.2012.339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012909968
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1002/sim.2165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043799311
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1016/j.ajhg.2009.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046488040
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1016/j.ajhg.2010.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009497006
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1016/j.ajhg.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009526716
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1016/j.ajhg.2011.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031378484
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1016/j.ajhg.2011.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020893402
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1016/j.ajhg.2013.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026807637
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1016/j.ajhg.2013.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017085500
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1016/j.ajhg.2014.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041269341
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1016/j.ajhg.2014.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034177087
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1016/j.ajhg.2014.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006164862
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1016/j.ajhg.2015.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002855443
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1016/j.ygeno.2011.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044009783
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.1016/j.ygeno.2011.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017671517
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.1073/pnas.0808358106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011903867
    357 rdf:type schema:CreativeWork
    358 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
    359 rdf:type schema:CreativeWork
    360 https://doi.org/10.1093/bioinformatics/btu416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007162866
    361 rdf:type schema:CreativeWork
    362 https://doi.org/10.1093/hmg/ddr092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029314831
    363 rdf:type schema:CreativeWork
    364 https://doi.org/10.1093/hmg/dds555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023291124
    365 rdf:type schema:CreativeWork
    366 https://doi.org/10.1093/nar/gkn923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047610281
    367 rdf:type schema:CreativeWork
    368 https://doi.org/10.1093/nar/gkr917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052960118
    369 rdf:type schema:CreativeWork
    370 https://doi.org/10.1097/ede.0b013e318181b865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026185414
    371 rdf:type schema:CreativeWork
    372 https://doi.org/10.1097/hjh.0b013e3283406927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033484878
    373 rdf:type schema:CreativeWork
    374 https://doi.org/10.1101/gr.135350.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012073457
    375 rdf:type schema:CreativeWork
    376 https://doi.org/10.1111/j.0006-341x.1999.00997.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081768
    377 rdf:type schema:CreativeWork
    378 https://doi.org/10.1126/science.1262110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029707840
    379 rdf:type schema:CreativeWork
    380 https://doi.org/10.1126/scitranslmed.3001807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062686900
    381 rdf:type schema:CreativeWork
    382 https://doi.org/10.1136/bmj.1.5323.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029266802
    383 rdf:type schema:CreativeWork
    384 https://doi.org/10.1161/circgenetics.113.000420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031002046
    385 rdf:type schema:CreativeWork
    386 https://doi.org/10.1161/circulationaha.109.904664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002719199
    387 rdf:type schema:CreativeWork
    388 https://doi.org/10.1161/hypertensionaha.113.01148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033080437
    389 rdf:type schema:CreativeWork
    390 https://doi.org/10.1371/journal.pgen.1000529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043446290
    391 rdf:type schema:CreativeWork
    392 https://doi.org/10.1371/journal.pgen.1000888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022521320
    393 rdf:type schema:CreativeWork
    394 https://doi.org/10.1371/journal.pgen.1001177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009880558
    395 rdf:type schema:CreativeWork
    396 https://doi.org/10.1371/journal.pmed.1001779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033632930
    397 rdf:type schema:CreativeWork
    398 https://doi.org/10.1534/g3.111.001198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037455212
    399 rdf:type schema:CreativeWork
    400 https://doi.org/10.1534/genetics.115.178616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000238299
    401 rdf:type schema:CreativeWork
    402 https://doi.org/10.1534/genetics.115.178905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013949906
    403 rdf:type schema:CreativeWork
    404 https://doi.org/10.3389/fgene.2014.00107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037892750
    405 rdf:type schema:CreativeWork
    406 https://doi.org/10.5888/pcd13.150348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041792301
    407 rdf:type schema:CreativeWork
    408 https://www.grid.ac/institutes/grid.266102.1 schema:alternateName University of California, San Francisco
    409 schema:name Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, USA.
    410 Institute for Human Genetics, University of California at San Francisco, San Francisco, California, USA.
    411 rdf:type schema:Organization
    412 https://www.grid.ac/institutes/grid.280062.e schema:alternateName Kaiser Permanente
    413 schema:name Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, USA.
    414 Institute for Human Genetics, University of California at San Francisco, San Francisco, California, USA.
    415 Kaiser Permanente Northern California Division of Research, Oakland, California, USA.
    416 rdf:type schema:Organization
    417 https://www.grid.ac/institutes/grid.8591.5 schema:alternateName University of Geneva
    418 schema:name Cardiology, Department of Specialties of Internal Medicine, University of Geneva, Geneva, Switzerland.
    419 Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, USA.
    420 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...