Genome-wide efficient mixed-model analysis for association studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-07

AUTHORS

Xiang Zhou, Matthew Stephens

ABSTRACT

Linear mixed models have attracted considerable attention recently as a powerful and effective tool for accounting for population stratification and relatedness in genetic association tests. However, existing methods for exact computation of standard test statistics are computationally impractical for even moderate-sized genome-wide association studies. To address this issue, several approximate methods have been proposed. Here, we present an efficient exact method, which we refer to as genome-wide efficient mixed-model association (GEMMA), that makes approximations unnecessary in many contexts. This method is approximately n times faster than the widely used exact method known as efficient mixed-model association (EMMA), where n is the sample size, making exact genome-wide association analysis computationally practical for large numbers of individuals. More... »

PAGES

821

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng.2310

DOI

http://dx.doi.org/10.1038/ng.2310

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046029840

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22706312


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Groups", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "Department of Human Genetics, University of Chicago, Chicago, Illinois, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xiang", 
        "id": "sg:person.01135315375.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135315375.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.", 
            "Department of Statistics, University of Chicago, Chicago, Illinois, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stephens", 
        "givenName": "Matthew", 
        "id": "sg:person.0773503655.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773503655.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004556449", 
          "https://doi.org/10.1038/nature05911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-23-1-67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005385825", 
          "https://doi.org/10.1186/1297-9686-23-1-67"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006195414", 
          "https://doi.org/10.1038/nmeth.1681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.099234.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007145431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007295306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.075614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012097484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.075614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012097484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1008328.1008329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012720310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016055940", 
          "https://doi.org/10.1038/ng.548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016055940", 
          "https://doi.org/10.1038/ng.548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017784241", 
          "https://doi.org/10.1038/ng.546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017784241", 
          "https://doi.org/10.1038/ng.546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031184798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.108.094201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035578011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.108.094201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035578011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.080101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035921397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.080101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035921397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043354004", 
          "https://doi.org/10.1038/nrg2813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043354004", 
          "https://doi.org/10.1038/nrg2813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043446290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046453067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1002425107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053554832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/339705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058638374"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-07", 
    "datePublishedReg": "2012-07-01", 
    "description": "Linear mixed models have attracted considerable attention recently as a powerful and effective tool for accounting for population stratification and relatedness in genetic association tests. However, existing methods for exact computation of standard test statistics are computationally impractical for even moderate-sized genome-wide association studies. To address this issue, several approximate methods have been proposed. Here, we present an efficient exact method, which we refer to as genome-wide efficient mixed-model association (GEMMA), that makes approximations unnecessary in many contexts. This method is approximately n times faster than the widely used exact method known as efficient mixed-model association (EMMA), where n is the sample size, making exact genome-wide association analysis computationally practical for large numbers of individuals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng.2310", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2529130", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2542044", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3636147", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Genome-wide efficient mixed-model analysis for association studies", 
    "pagination": "821", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db42a7376ebba5ecfa8dec4449d830b402866fc85c534d20ffe88adfc4e99b8f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22706312"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng.2310"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046029840"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng.2310", 
      "https://app.dimensions.ai/details/publication/pub.1046029840"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ng.2310"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng.2310'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng.2310'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng.2310'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng.2310'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      56 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng.2310 schema:about N05bf0d1d2e1e433d86f9b16473178a67
2 N1bca0fd2cee44918a9a74ec6f356bc27
3 N37165ad468cb4502bc3f365088968a98
4 N38ec33b6571d432b82f3eaa7e56cdc1c
5 N7ef55025c5c04e6b843d8699bfe29873
6 N9343c5cc34b449aab017a97d991eae92
7 Na8e6f1c5c1544b5a9088bb963eb6055d
8 Nb36fc28dabf14753b42fdf0469cd228a
9 Nc5c26b228d184d74822cd629a5b0a074
10 anzsrc-for:01
11 anzsrc-for:0104
12 schema:author N23449d9909b9470189e4e24a17533630
13 schema:citation sg:pub.10.1038/nature05911
14 sg:pub.10.1038/ng.546
15 sg:pub.10.1038/ng.548
16 sg:pub.10.1038/ng1702
17 sg:pub.10.1038/nmeth.1681
18 sg:pub.10.1038/nrg2813
19 sg:pub.10.1186/1297-9686-23-1-67
20 https://doi.org/10.1073/pnas.1002425107
21 https://doi.org/10.1086/339705
22 https://doi.org/10.1093/bioinformatics/btm108
23 https://doi.org/10.1101/gr.099234.109
24 https://doi.org/10.1145/1008328.1008329
25 https://doi.org/10.1371/journal.pgen.1000231
26 https://doi.org/10.1371/journal.pgen.1000279
27 https://doi.org/10.1371/journal.pgen.1000529
28 https://doi.org/10.1534/genetics.107.075614
29 https://doi.org/10.1534/genetics.107.080101
30 https://doi.org/10.1534/genetics.108.094201
31 schema:datePublished 2012-07
32 schema:datePublishedReg 2012-07-01
33 schema:description Linear mixed models have attracted considerable attention recently as a powerful and effective tool for accounting for population stratification and relatedness in genetic association tests. However, existing methods for exact computation of standard test statistics are computationally impractical for even moderate-sized genome-wide association studies. To address this issue, several approximate methods have been proposed. Here, we present an efficient exact method, which we refer to as genome-wide efficient mixed-model association (GEMMA), that makes approximations unnecessary in many contexts. This method is approximately n times faster than the widely used exact method known as efficient mixed-model association (EMMA), where n is the sample size, making exact genome-wide association analysis computationally practical for large numbers of individuals.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf Ncbd8e6ebf26b4446b47d91f328ed1720
38 Nee099193700440fdb1e9146dbc839232
39 sg:journal.1103138
40 schema:name Genome-wide efficient mixed-model analysis for association studies
41 schema:pagination 821
42 schema:productId N0cbfc33517d945b0858a896dc86058c4
43 N2a2040318cc842b7bfea71d551d4ec6e
44 N5020d86ba152473997454b8b99922b5a
45 N9647a9a988df442aaae7213bcb75e341
46 Nf48525766de545be820ad7fc1d779003
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046029840
48 https://doi.org/10.1038/ng.2310
49 schema:sdDatePublished 2019-04-10T14:49
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Ne1d43d1973aa4442a9b30a08a94c277f
52 schema:url https://www.nature.com/articles/ng.2310
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N05bf0d1d2e1e433d86f9b16473178a67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Humans
58 rdf:type schema:DefinedTerm
59 N0cbfc33517d945b0858a896dc86058c4 schema:name doi
60 schema:value 10.1038/ng.2310
61 rdf:type schema:PropertyValue
62 N1bca0fd2cee44918a9a74ec6f356bc27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Models, Genetic
64 rdf:type schema:DefinedTerm
65 N23449d9909b9470189e4e24a17533630 rdf:first sg:person.01135315375.88
66 rdf:rest Ncd3e63c087314c28bf5a139f10170b07
67 N2a2040318cc842b7bfea71d551d4ec6e schema:name dimensions_id
68 schema:value pub.1046029840
69 rdf:type schema:PropertyValue
70 N37165ad468cb4502bc3f365088968a98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Computer Simulation
72 rdf:type schema:DefinedTerm
73 N38ec33b6571d432b82f3eaa7e56cdc1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Linear Models
75 rdf:type schema:DefinedTerm
76 N5020d86ba152473997454b8b99922b5a schema:name nlm_unique_id
77 schema:value 9216904
78 rdf:type schema:PropertyValue
79 N7ef55025c5c04e6b843d8699bfe29873 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Genome-Wide Association Study
81 rdf:type schema:DefinedTerm
82 N9343c5cc34b449aab017a97d991eae92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Genome, Human
84 rdf:type schema:DefinedTerm
85 N9647a9a988df442aaae7213bcb75e341 schema:name readcube_id
86 schema:value db42a7376ebba5ecfa8dec4449d830b402866fc85c534d20ffe88adfc4e99b8f
87 rdf:type schema:PropertyValue
88 Na8e6f1c5c1544b5a9088bb963eb6055d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Population Groups
90 rdf:type schema:DefinedTerm
91 Nb36fc28dabf14753b42fdf0469cd228a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Software
93 rdf:type schema:DefinedTerm
94 Nc5c26b228d184d74822cd629a5b0a074 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Polymorphism, Single Nucleotide
96 rdf:type schema:DefinedTerm
97 Ncbd8e6ebf26b4446b47d91f328ed1720 schema:volumeNumber 44
98 rdf:type schema:PublicationVolume
99 Ncd3e63c087314c28bf5a139f10170b07 rdf:first sg:person.0773503655.04
100 rdf:rest rdf:nil
101 Ne1d43d1973aa4442a9b30a08a94c277f schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nee099193700440fdb1e9146dbc839232 schema:issueNumber 7
104 rdf:type schema:PublicationIssue
105 Nf48525766de545be820ad7fc1d779003 schema:name pubmed_id
106 schema:value 22706312
107 rdf:type schema:PropertyValue
108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
109 schema:name Mathematical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
112 schema:name Statistics
113 rdf:type schema:DefinedTerm
114 sg:grant.2529130 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.2310
115 rdf:type schema:MonetaryGrant
116 sg:grant.2542044 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.2310
117 rdf:type schema:MonetaryGrant
118 sg:grant.3636147 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.2310
119 rdf:type schema:MonetaryGrant
120 sg:journal.1103138 schema:issn 1061-4036
121 1546-1718
122 schema:name Nature Genetics
123 rdf:type schema:Periodical
124 sg:person.01135315375.88 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
125 schema:familyName Zhou
126 schema:givenName Xiang
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135315375.88
128 rdf:type schema:Person
129 sg:person.0773503655.04 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
130 schema:familyName Stephens
131 schema:givenName Matthew
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773503655.04
133 rdf:type schema:Person
134 sg:pub.10.1038/nature05911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556449
135 https://doi.org/10.1038/nature05911
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/ng.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017784241
138 https://doi.org/10.1038/ng.546
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/ng.548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016055940
141 https://doi.org/10.1038/ng.548
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/ng1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035781360
144 https://doi.org/10.1038/ng1702
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nmeth.1681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006195414
147 https://doi.org/10.1038/nmeth.1681
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nrg2813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043354004
150 https://doi.org/10.1038/nrg2813
151 rdf:type schema:CreativeWork
152 sg:pub.10.1186/1297-9686-23-1-67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005385825
153 https://doi.org/10.1186/1297-9686-23-1-67
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.1002425107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053554832
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1086/339705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058638374
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/bioinformatics/btm108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031184798
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1101/gr.099234.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007145431
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1145/1008328.1008329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012720310
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1371/journal.pgen.1000231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007295306
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1371/journal.pgen.1000279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046453067
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1371/journal.pgen.1000529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043446290
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1534/genetics.107.075614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012097484
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1534/genetics.107.080101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035921397
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1534/genetics.108.094201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035578011
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.170205.1 schema:alternateName University of Chicago
178 schema:name Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.
179 Department of Statistics, University of Chicago, Chicago, Illinois, USA.
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...