Differential confounding of rare and common variants in spatially structured populations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-03

AUTHORS

Iain Mathieson, Gil McVean

ABSTRACT

Well-powered genome-wide association studies, now made possible through advances in technology and large-scale collaborative projects, promise to characterize the contribution of rare variants to complex traits and disease. However, while population structure is a known confounder of association studies, it remains unknown whether methods developed to control stratification are equally effective for rare variants. Here, we demonstrate that rare variants can show a stratification that is systematically different from, and typically stronger than, common variants, and this is not necessarily corrected by existing methods. We show that the same process leads to inflation for load-based tests and can obscure signals at truly associated variants. Furthermore, we show that populations can display spatial structure in rare variants, even when Wright's fixation index F(ST) is low, but that allele frequency-dependent metrics of allele sharing can reveal localized stratification. These results underscore the importance of collecting and integrating spatial information in the genetic analysis of complex traits. More... »

PAGES

243

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ng.1074

DOI

http://dx.doi.org/10.1038/ng.1074

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042693962

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22306651


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait, Heritable", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wellcome Centre for Human Genetics", 
          "id": "https://www.grid.ac/institutes/grid.270683.8", 
          "name": [
            "Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathieson", 
        "givenName": "Iain", 
        "id": "sg:person.01125175221.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125175221.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.", 
            "Department of Statistics, University of Oxford, Oxford, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "McVean", 
        "givenName": "Gil", 
        "id": "sg:person.07717657417.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717657417.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002008100", 
          "https://doi.org/10.1038/ng1337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002008100", 
          "https://doi.org/10.1038/ng1337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1001322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003397023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.20.8.1983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004459304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005147626", 
          "https://doi.org/10.1038/nature08494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010608717", 
          "https://doi.org/10.1038/nature09534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010608717", 
          "https://doi.org/10.1038/nature09534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/475163a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012197070", 
          "https://doi.org/10.1038/475163a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1001289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014001412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014729777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014729777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00997.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035776980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.080101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035921397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.080101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035921397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/tpbi.2001.1543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036561676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.f.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038178629", 
          "https://doi.org/10.1038/ng.f.136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038747304", 
          "https://doi.org/10.1038/nrg2867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038747304", 
          "https://doi.org/10.1038/nrg2867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038826763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0005472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038867724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044718555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044718555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)12520-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045674803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049291823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049291823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050281556", 
          "https://doi.org/10.1038/ng1653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050281556", 
          "https://doi.org/10.1038/ng1653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050281556", 
          "https://doi.org/10.1038/ng1653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051911808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/37.1-2.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059416116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1099870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8091226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062652231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2332142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069893800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079596497", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a112408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082919918"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03", 
    "datePublishedReg": "2012-03-01", 
    "description": "Well-powered genome-wide association studies, now made possible through advances in technology and large-scale collaborative projects, promise to characterize the contribution of rare variants to complex traits and disease. However, while population structure is a known confounder of association studies, it remains unknown whether methods developed to control stratification are equally effective for rare variants. Here, we demonstrate that rare variants can show a stratification that is systematically different from, and typically stronger than, common variants, and this is not necessarily corrected by existing methods. We show that the same process leads to inflation for load-based tests and can obscure signals at truly associated variants. Furthermore, we show that populations can display spatial structure in rare variants, even when Wright's fixation index F(ST) is low, but that allele frequency-dependent metrics of allele sharing can reveal localized stratification. These results underscore the importance of collecting and integrating spatial information in the genetic analysis of complex traits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ng.1074", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3636172", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3641172", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3636942", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Differential confounding of rare and common variants in spatially structured populations", 
    "pagination": "243", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb5e6001ebdf3cfced2e7383147a163170b7d10ef0bc037efea7cbeca4fe302a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22306651"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ng.1074"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042693962"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ng.1074", 
      "https://app.dimensions.ai/details/publication/pub.1042693962"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ng.1074"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ng.1074'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ng.1074'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ng.1074'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ng.1074'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      68 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ng.1074 schema:about N0393b3f64a2d49eb9587fd986bf9f63a
2 N3d1574a0686e47108c527f87d7973ca8
3 N76ca7978c8d94171ac90a90ed81fae8a
4 N7cf1199761254dde83695ad9c2518672
5 N80b06cfe88cd41b08c1360923fcbf217
6 N81f96288b10e40ceb3413e8e098a83ea
7 Naa33b95d22c54fd099b1598e4bb1d1d7
8 Ne21881a83d654dac8c2f20436d68c621
9 Nf73cbb9d805e497d874dbc286794563f
10 Nfe2a770c397f4783a76ee9bdec7818ff
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N5a7af1430b2149df904a28efeb8e6a5f
14 schema:citation sg:pub.10.1038/475163a
15 sg:pub.10.1038/nature08494
16 sg:pub.10.1038/nature09534
17 sg:pub.10.1038/ng.f.136
18 sg:pub.10.1038/ng1337
19 sg:pub.10.1038/ng1653
20 sg:pub.10.1038/ng1847
21 sg:pub.10.1038/nrg2867
22 https://app.dimensions.ai/details/publication/pub.1079596497
23 https://doi.org/10.1002/gepi.20450
24 https://doi.org/10.1002/gepi.20451
25 https://doi.org/10.1006/tpbi.2001.1543
26 https://doi.org/10.1016/j.ajhg.2008.06.024
27 https://doi.org/10.1016/s0140-6736(03)12520-2
28 https://doi.org/10.1086/302929
29 https://doi.org/10.1093/biomet/37.1-2.17
30 https://doi.org/10.1093/oxfordjournals.aje.a112408
31 https://doi.org/10.1111/j.0006-341x.1999.00997.x
32 https://doi.org/10.1126/science.1099870
33 https://doi.org/10.1126/science.1167728
34 https://doi.org/10.1126/science.8091226
35 https://doi.org/10.1161/01.atv.20.8.1983
36 https://doi.org/10.1371/journal.pgen.1000384
37 https://doi.org/10.1371/journal.pgen.1000477
38 https://doi.org/10.1371/journal.pgen.1001289
39 https://doi.org/10.1371/journal.pgen.1001322
40 https://doi.org/10.1371/journal.pone.0005472
41 https://doi.org/10.1534/genetics.107.080101
42 https://doi.org/10.2307/2332142
43 schema:datePublished 2012-03
44 schema:datePublishedReg 2012-03-01
45 schema:description Well-powered genome-wide association studies, now made possible through advances in technology and large-scale collaborative projects, promise to characterize the contribution of rare variants to complex traits and disease. However, while population structure is a known confounder of association studies, it remains unknown whether methods developed to control stratification are equally effective for rare variants. Here, we demonstrate that rare variants can show a stratification that is systematically different from, and typically stronger than, common variants, and this is not necessarily corrected by existing methods. We show that the same process leads to inflation for load-based tests and can obscure signals at truly associated variants. Furthermore, we show that populations can display spatial structure in rare variants, even when Wright's fixation index F(ST) is low, but that allele frequency-dependent metrics of allele sharing can reveal localized stratification. These results underscore the importance of collecting and integrating spatial information in the genetic analysis of complex traits.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N0b46dd1bee1b41ebad24b62052bf99fa
50 Nf508029b249348eeb688a093b734100c
51 sg:journal.1103138
52 schema:name Differential confounding of rare and common variants in spatially structured populations
53 schema:pagination 243
54 schema:productId N083324158fbd4d7a83d325f703335f9e
55 N88f98306118c436eb9104c334e8c70ed
56 Nb1b62ed1057a4225b399b0fa5e29bfbc
57 Ndae7d3f20d954684bbbcf5d99d8e686b
58 Ne9a16b51b5614433b3d651dbbc0bb45e
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042693962
60 https://doi.org/10.1038/ng.1074
61 schema:sdDatePublished 2019-04-10T19:46
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nf2114e97502b43da8a62fd2b09d69840
64 schema:url https://www.nature.com/articles/ng.1074
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0393b3f64a2d49eb9587fd986bf9f63a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Genome-Wide Association Study
70 rdf:type schema:DefinedTerm
71 N083324158fbd4d7a83d325f703335f9e schema:name dimensions_id
72 schema:value pub.1042693962
73 rdf:type schema:PropertyValue
74 N0b46dd1bee1b41ebad24b62052bf99fa schema:volumeNumber 44
75 rdf:type schema:PublicationVolume
76 N3d1574a0686e47108c527f87d7973ca8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Geography
78 rdf:type schema:DefinedTerm
79 N5a7af1430b2149df904a28efeb8e6a5f rdf:first sg:person.01125175221.54
80 rdf:rest N6852a2a3bad74d22b7f8a069ffc9b9ac
81 N6852a2a3bad74d22b7f8a069ffc9b9ac rdf:first sg:person.07717657417.22
82 rdf:rest rdf:nil
83 N76ca7978c8d94171ac90a90ed81fae8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Humans
85 rdf:type schema:DefinedTerm
86 N7cf1199761254dde83695ad9c2518672 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Genetic Variation
88 rdf:type schema:DefinedTerm
89 N80b06cfe88cd41b08c1360923fcbf217 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Risk Assessment
91 rdf:type schema:DefinedTerm
92 N81f96288b10e40ceb3413e8e098a83ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Quantitative Trait, Heritable
94 rdf:type schema:DefinedTerm
95 N88f98306118c436eb9104c334e8c70ed schema:name pubmed_id
96 schema:value 22306651
97 rdf:type schema:PropertyValue
98 Naa33b95d22c54fd099b1598e4bb1d1d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Phenotype
100 rdf:type schema:DefinedTerm
101 Nb1b62ed1057a4225b399b0fa5e29bfbc schema:name readcube_id
102 schema:value cb5e6001ebdf3cfced2e7383147a163170b7d10ef0bc037efea7cbeca4fe302a
103 rdf:type schema:PropertyValue
104 Ndae7d3f20d954684bbbcf5d99d8e686b schema:name doi
105 schema:value 10.1038/ng.1074
106 rdf:type schema:PropertyValue
107 Ne21881a83d654dac8c2f20436d68c621 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Genetics, Population
109 rdf:type schema:DefinedTerm
110 Ne9a16b51b5614433b3d651dbbc0bb45e schema:name nlm_unique_id
111 schema:value 9216904
112 rdf:type schema:PropertyValue
113 Nf2114e97502b43da8a62fd2b09d69840 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nf508029b249348eeb688a093b734100c schema:issueNumber 3
116 rdf:type schema:PublicationIssue
117 Nf73cbb9d805e497d874dbc286794563f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Gene Frequency
119 rdf:type schema:DefinedTerm
120 Nfe2a770c397f4783a76ee9bdec7818ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Data Interpretation, Statistical
122 rdf:type schema:DefinedTerm
123 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
124 schema:name Biological Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
127 schema:name Genetics
128 rdf:type schema:DefinedTerm
129 sg:grant.3636172 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.1074
130 rdf:type schema:MonetaryGrant
131 sg:grant.3636942 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.1074
132 rdf:type schema:MonetaryGrant
133 sg:grant.3641172 http://pending.schema.org/fundedItem sg:pub.10.1038/ng.1074
134 rdf:type schema:MonetaryGrant
135 sg:journal.1103138 schema:issn 1061-4036
136 1546-1718
137 schema:name Nature Genetics
138 rdf:type schema:Periodical
139 sg:person.01125175221.54 schema:affiliation https://www.grid.ac/institutes/grid.270683.8
140 schema:familyName Mathieson
141 schema:givenName Iain
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125175221.54
143 rdf:type schema:Person
144 sg:person.07717657417.22 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
145 schema:familyName McVean
146 schema:givenName Gil
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717657417.22
148 rdf:type schema:Person
149 sg:pub.10.1038/475163a schema:sameAs https://app.dimensions.ai/details/publication/pub.1012197070
150 https://doi.org/10.1038/475163a
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nature08494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005147626
153 https://doi.org/10.1038/nature08494
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
156 https://doi.org/10.1038/nature09534
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/ng.f.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038178629
159 https://doi.org/10.1038/ng.f.136
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ng1337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002008100
162 https://doi.org/10.1038/ng1337
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ng1653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050281556
165 https://doi.org/10.1038/ng1653
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
168 https://doi.org/10.1038/ng1847
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nrg2867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038747304
171 https://doi.org/10.1038/nrg2867
172 rdf:type schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1079596497 schema:CreativeWork
174 https://doi.org/10.1002/gepi.20450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049291823
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/gepi.20451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044718555
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1006/tpbi.2001.1543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036561676
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ajhg.2008.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038826763
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0140-6736(03)12520-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045674803
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1086/302929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610479
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/biomet/37.1-2.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416116
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/oxfordjournals.aje.a112408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082919918
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/j.0006-341x.1999.00997.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081768
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.1099870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449790
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.1167728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014729777
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.8091226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652231
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1161/01.atv.20.8.1983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004459304
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pgen.1000384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035776980
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1371/journal.pgen.1000477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051911808
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1371/journal.pgen.1001289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014001412
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1371/journal.pgen.1001322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003397023
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1371/journal.pone.0005472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038867724
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1534/genetics.107.080101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035921397
211 rdf:type schema:CreativeWork
212 https://doi.org/10.2307/2332142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069893800
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.270683.8 schema:alternateName Wellcome Centre for Human Genetics
215 schema:name Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
218 schema:name Department of Statistics, University of Oxford, Oxford, UK.
219 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...