Cyclization of Chloroplast DNA Fragments of Chlamydomonas reinhardi View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1972-07

AUTHORS

J. D. ROCHAIX

ABSTRACT

THE chloroplast of the unicellular green alga Chlamydomonas reinhardi contains about 5 × 109 daltons of DNA1. Preliminary experiments (Surzycki and Rochaix, unpublished results) show that some DNA molecules of this chloroplast have a molecular weight of at least 200 × 106. The reassociation rate of this DNA is slightly lower than that of T4 DNA2,3. Assuming an inverse proportionality between the rate of reassociation and the genome complexity, one can estimate that the chloroplast DNA is made of about twenty-five similar copies of 2 × 108 daltons each2,3. In addition, 10% of the chloroplast DNA of C. reinhardi seems to reassociate more swiftly than the bulk chloroplast DNA3 and this fast reassociation rate suggests repetitive units of 1–10 × 106 daltons. Table 1 summarizes the current data on various chloroplast DNAs. Steps toward the elucidation of the arrangement of some of the chloroplast genes of C. reinhardi have been made by transcriptional mapping13 and by hybridization experiments14, and the results of these studies suggest that the genes for the 16S and 23S chloroplast ribosomal RNAs are tandemly arranged in two to three pairs in each of the twenty-five copies. This study was aimed at testing the chloroplast DNA for repetitive base sequences whose presence was suggested by the reports mentioned3,13,14. For this purpose the method of cyclization of DNA fragments developed by Thomas et al.15 was used. More... »

PAGES

76-78

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/newbio238076a0

DOI

http://dx.doi.org/10.1038/newbio238076a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000139263

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/4505413


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlamydomonas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlorophyta", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chloroplasts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deoxyribonucleases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Denaturation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plants", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biological Laboratories, Harvard University, 02138, Cambridge, Massachusetts", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Biological Laboratories, Harvard University, 02138, Cambridge, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "ROCHAIX", 
        "givenName": "J. D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00284946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029858968", 
          "https://doi.org/10.1007/bf00284946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/220786a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040971755", 
          "https://doi.org/10.1038/220786a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1972-07", 
    "datePublishedReg": "1972-07-01", 
    "description": "THE chloroplast of the unicellular green alga Chlamydomonas reinhardi contains about 5 \u00d7 109 daltons of DNA1. Preliminary experiments (Surzycki and Rochaix, unpublished results) show that some DNA molecules of this chloroplast have a molecular weight of at least 200 \u00d7 106. The reassociation rate of this DNA is slightly lower than that of T4 DNA2,3. Assuming an inverse proportionality between the rate of reassociation and the genome complexity, one can estimate that the chloroplast DNA is made of about twenty-five similar copies of 2 \u00d7 108 daltons each2,3. In addition, 10% of the chloroplast DNA of C. reinhardi seems to reassociate more swiftly than the bulk chloroplast DNA3 and this fast reassociation rate suggests repetitive units of 1\u201310 \u00d7 106 daltons. Table 1 summarizes the current data on various chloroplast DNAs. Steps toward the elucidation of the arrangement of some of the chloroplast genes of C. reinhardi have been made by transcriptional mapping13 and by hybridization experiments14, and the results of these studies suggest that the genes for the 16S and 23S chloroplast ribosomal RNAs are tandemly arranged in two to three pairs in each of the twenty-five copies. This study was aimed at testing the chloroplast DNA for repetitive base sequences whose presence was suggested by the reports mentioned3,13,14. For this purpose the method of cyclization of DNA fragments developed by Thomas et al.15 was used.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/newbio238076a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "81", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "238"
      }
    ], 
    "keywords": [
      "chloroplast DNA", 
      "C. reinhardi", 
      "DNA fragments", 
      "Chlamydomonas reinhardi", 
      "reassociation rate", 
      "chloroplast DNA fragments", 
      "unicellular green alga Chlamydomonas reinhardi", 
      "chloroplast ribosomal RNA", 
      "green alga Chlamydomonas reinhardi", 
      "chloroplast genes", 
      "genome complexity", 
      "ribosomal RNA", 
      "rate of reassociation", 
      "DNA molecules", 
      "reinhardi", 
      "DNA", 
      "base sequence", 
      "similar copies", 
      "chloroplasts", 
      "repetitive units", 
      "genes", 
      "daltons", 
      "copies", 
      "fragments", 
      "molecular weight", 
      "RNA", 
      "repetitive base sequences", 
      "reassociation", 
      "DNA3", 
      "DNA1", 
      "sequence", 
      "elucidation", 
      "molecules", 
      "current data", 
      "pairs", 
      "presence", 
      "study", 
      "Table 1", 
      "addition", 
      "T4", 
      "rate", 
      "step", 
      "arrangement", 
      "experiments", 
      "weight", 
      "preliminary experiments", 
      "Thomas et al", 
      "data", 
      "complexity", 
      "results", 
      "report", 
      "inverse proportionality", 
      "units", 
      "et al", 
      "cyclization", 
      "method", 
      "al", 
      "purpose", 
      "proportionality", 
      "method of cyclization"
    ], 
    "name": "Cyclization of Chloroplast DNA Fragments of Chlamydomonas reinhardi", 
    "pagination": "76-78", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000139263"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/newbio238076a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "4505413"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/newbio238076a0", 
      "https://app.dimensions.ai/details/publication/pub.1000139263"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_127.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/newbio238076a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/newbio238076a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/newbio238076a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/newbio238076a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/newbio238076a0'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      97 URIs      87 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/newbio238076a0 schema:about N01ce4780fba94ce2b4ee0364cc60f211
2 N11cd168bc8ed45a5a46ee895218a7e69
3 N17e3a38e9d70439d831f3013682bc3d9
4 N18b2ddcc4b3b47169dba13e1a34d69c1
5 N5ea76e9d8fe94e0db07f326c52c1516a
6 N8ed82d8b00ec424aac5ca488affc6f88
7 N8ee122b7cf5e4b8b9fef892918cf838b
8 Nd4412db4388f48179789ac22648a86a3
9 Nf55e9ed52b0744178497f9836d4feb13
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N668f201e582744ecb0f0de3db4d89898
13 schema:citation sg:pub.10.1007/bf00284946
14 sg:pub.10.1038/220786a0
15 schema:datePublished 1972-07
16 schema:datePublishedReg 1972-07-01
17 schema:description THE chloroplast of the unicellular green alga Chlamydomonas reinhardi contains about 5 × 109 daltons of DNA1. Preliminary experiments (Surzycki and Rochaix, unpublished results) show that some DNA molecules of this chloroplast have a molecular weight of at least 200 × 106. The reassociation rate of this DNA is slightly lower than that of T4 DNA2,3. Assuming an inverse proportionality between the rate of reassociation and the genome complexity, one can estimate that the chloroplast DNA is made of about twenty-five similar copies of 2 × 108 daltons each2,3. In addition, 10% of the chloroplast DNA of C. reinhardi seems to reassociate more swiftly than the bulk chloroplast DNA3 and this fast reassociation rate suggests repetitive units of 1–10 × 106 daltons. Table 1 summarizes the current data on various chloroplast DNAs. Steps toward the elucidation of the arrangement of some of the chloroplast genes of C. reinhardi have been made by transcriptional mapping13 and by hybridization experiments14, and the results of these studies suggest that the genes for the 16S and 23S chloroplast ribosomal RNAs are tandemly arranged in two to three pairs in each of the twenty-five copies. This study was aimed at testing the chloroplast DNA for repetitive base sequences whose presence was suggested by the reports mentioned3,13,14. For this purpose the method of cyclization of DNA fragments developed by Thomas et al.15 was used.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf Nbdcafe2300874dbab8ecf31de353a044
21 Ne463c5dc08434c9584527c8bdf2afa2d
22 sg:journal.1018957
23 schema:keywords C. reinhardi
24 Chlamydomonas reinhardi
25 DNA
26 DNA fragments
27 DNA molecules
28 DNA1
29 DNA3
30 RNA
31 T4
32 Table 1
33 Thomas et al
34 addition
35 al
36 arrangement
37 base sequence
38 chloroplast DNA
39 chloroplast DNA fragments
40 chloroplast genes
41 chloroplast ribosomal RNA
42 chloroplasts
43 complexity
44 copies
45 current data
46 cyclization
47 daltons
48 data
49 elucidation
50 et al
51 experiments
52 fragments
53 genes
54 genome complexity
55 green alga Chlamydomonas reinhardi
56 inverse proportionality
57 method
58 method of cyclization
59 molecular weight
60 molecules
61 pairs
62 preliminary experiments
63 presence
64 proportionality
65 purpose
66 rate
67 rate of reassociation
68 reassociation
69 reassociation rate
70 reinhardi
71 repetitive base sequences
72 repetitive units
73 report
74 results
75 ribosomal RNA
76 sequence
77 similar copies
78 step
79 study
80 unicellular green alga Chlamydomonas reinhardi
81 units
82 weight
83 schema:name Cyclization of Chloroplast DNA Fragments of Chlamydomonas reinhardi
84 schema:pagination 76-78
85 schema:productId N2a56eb3899bf4ac980529300ea2ccf71
86 N567242a8d1814a17a553be6f62f7112f
87 N90712b8491b84f71840987e9fef3be66
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000139263
89 https://doi.org/10.1038/newbio238076a0
90 schema:sdDatePublished 2022-08-04T16:49
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Naef177fa336842e0892374a199780920
93 schema:url https://doi.org/10.1038/newbio238076a0
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N01ce4780fba94ce2b4ee0364cc60f211 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Plants
99 rdf:type schema:DefinedTerm
100 N11cd168bc8ed45a5a46ee895218a7e69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Microscopy, Electron
102 rdf:type schema:DefinedTerm
103 N17e3a38e9d70439d831f3013682bc3d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Chloroplasts
105 rdf:type schema:DefinedTerm
106 N18b2ddcc4b3b47169dba13e1a34d69c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Nucleic Acid Denaturation
108 rdf:type schema:DefinedTerm
109 N2a56eb3899bf4ac980529300ea2ccf71 schema:name pubmed_id
110 schema:value 4505413
111 rdf:type schema:PropertyValue
112 N567242a8d1814a17a553be6f62f7112f schema:name dimensions_id
113 schema:value pub.1000139263
114 rdf:type schema:PropertyValue
115 N5ea76e9d8fe94e0db07f326c52c1516a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Chlamydomonas
117 rdf:type schema:DefinedTerm
118 N668f201e582744ecb0f0de3db4d89898 rdf:first N788507ba68a54e57aa8c9284fd108bce
119 rdf:rest rdf:nil
120 N788507ba68a54e57aa8c9284fd108bce schema:affiliation grid-institutes:grid.38142.3c
121 schema:familyName ROCHAIX
122 schema:givenName J. D.
123 rdf:type schema:Person
124 N8ed82d8b00ec424aac5ca488affc6f88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name DNA
126 rdf:type schema:DefinedTerm
127 N8ee122b7cf5e4b8b9fef892918cf838b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Chlorophyta
129 rdf:type schema:DefinedTerm
130 N90712b8491b84f71840987e9fef3be66 schema:name doi
131 schema:value 10.1038/newbio238076a0
132 rdf:type schema:PropertyValue
133 Naef177fa336842e0892374a199780920 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 Nbdcafe2300874dbab8ecf31de353a044 schema:issueNumber 81
136 rdf:type schema:PublicationIssue
137 Nd4412db4388f48179789ac22648a86a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Deoxyribonucleases
139 rdf:type schema:DefinedTerm
140 Ne463c5dc08434c9584527c8bdf2afa2d schema:volumeNumber 238
141 rdf:type schema:PublicationVolume
142 Nf55e9ed52b0744178497f9836d4feb13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Base Sequence
144 rdf:type schema:DefinedTerm
145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biological Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
149 schema:name Genetics
150 rdf:type schema:DefinedTerm
151 sg:journal.1018957 schema:issn 0028-0836
152 1476-4687
153 schema:name Nature
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:pub.10.1007/bf00284946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029858968
157 https://doi.org/10.1007/bf00284946
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/220786a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040971755
160 https://doi.org/10.1038/220786a0
161 rdf:type schema:CreativeWork
162 grid-institutes:grid.38142.3c schema:alternateName Biological Laboratories, Harvard University, 02138, Cambridge, Massachusetts
163 schema:name Biological Laboratories, Harvard University, 02138, Cambridge, Massachusetts
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...