Ontology type: schema:ScholarlyArticle
1972-07
AUTHORSJ. D. ROCHAIX
ABSTRACTTHE chloroplast of the unicellular green alga Chlamydomonas reinhardi contains about 5 × 109 daltons of DNA1. Preliminary experiments (Surzycki and Rochaix, unpublished results) show that some DNA molecules of this chloroplast have a molecular weight of at least 200 × 106. The reassociation rate of this DNA is slightly lower than that of T4 DNA2,3. Assuming an inverse proportionality between the rate of reassociation and the genome complexity, one can estimate that the chloroplast DNA is made of about twenty-five similar copies of 2 × 108 daltons each2,3. In addition, 10% of the chloroplast DNA of C. reinhardi seems to reassociate more swiftly than the bulk chloroplast DNA3 and this fast reassociation rate suggests repetitive units of 1–10 × 106 daltons. Table 1 summarizes the current data on various chloroplast DNAs. Steps toward the elucidation of the arrangement of some of the chloroplast genes of C. reinhardi have been made by transcriptional mapping13 and by hybridization experiments14, and the results of these studies suggest that the genes for the 16S and 23S chloroplast ribosomal RNAs are tandemly arranged in two to three pairs in each of the twenty-five copies. This study was aimed at testing the chloroplast DNA for repetitive base sequences whose presence was suggested by the reports mentioned3,13,14. For this purpose the method of cyclization of DNA fragments developed by Thomas et al.15 was used. More... »
PAGES76-78
http://scigraph.springernature.com/pub.10.1038/newbio238076a0
DOIhttp://dx.doi.org/10.1038/newbio238076a0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1000139263
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/4505413
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Base Sequence",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chlamydomonas",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chlorophyta",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chloroplasts",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "DNA",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Deoxyribonucleases",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Microscopy, Electron",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Nucleic Acid Denaturation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Plants",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Biological Laboratories, Harvard University, 02138, Cambridge, Massachusetts",
"id": "http://www.grid.ac/institutes/grid.38142.3c",
"name": [
"Biological Laboratories, Harvard University, 02138, Cambridge, Massachusetts"
],
"type": "Organization"
},
"familyName": "ROCHAIX",
"givenName": "J. D.",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00284946",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029858968",
"https://doi.org/10.1007/bf00284946"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/220786a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040971755",
"https://doi.org/10.1038/220786a0"
],
"type": "CreativeWork"
}
],
"datePublished": "1972-07",
"datePublishedReg": "1972-07-01",
"description": "THE chloroplast of the unicellular green alga Chlamydomonas reinhardi contains about 5 \u00d7 109 daltons of DNA1. Preliminary experiments (Surzycki and Rochaix, unpublished results) show that some DNA molecules of this chloroplast have a molecular weight of at least 200 \u00d7 106. The reassociation rate of this DNA is slightly lower than that of T4 DNA2,3. Assuming an inverse proportionality between the rate of reassociation and the genome complexity, one can estimate that the chloroplast DNA is made of about twenty-five similar copies of 2 \u00d7 108 daltons each2,3. In addition, 10% of the chloroplast DNA of C. reinhardi seems to reassociate more swiftly than the bulk chloroplast DNA3 and this fast reassociation rate suggests repetitive units of 1\u201310 \u00d7 106 daltons. Table 1 summarizes the current data on various chloroplast DNAs. Steps toward the elucidation of the arrangement of some of the chloroplast genes of C. reinhardi have been made by transcriptional mapping13 and by hybridization experiments14, and the results of these studies suggest that the genes for the 16S and 23S chloroplast ribosomal RNAs are tandemly arranged in two to three pairs in each of the twenty-five copies. This study was aimed at testing the chloroplast DNA for repetitive base sequences whose presence was suggested by the reports mentioned3,13,14. For this purpose the method of cyclization of DNA fragments developed by Thomas et al.15 was used.",
"genre": "article",
"id": "sg:pub.10.1038/newbio238076a0",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "81",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "238"
}
],
"keywords": [
"chloroplast DNA",
"C. reinhardi",
"DNA fragments",
"Chlamydomonas reinhardi",
"reassociation rate",
"chloroplast DNA fragments",
"unicellular green alga Chlamydomonas reinhardi",
"chloroplast ribosomal RNA",
"green alga Chlamydomonas reinhardi",
"chloroplast genes",
"genome complexity",
"ribosomal RNA",
"rate of reassociation",
"DNA molecules",
"reinhardi",
"DNA",
"base sequence",
"similar copies",
"chloroplasts",
"repetitive units",
"genes",
"daltons",
"copies",
"fragments",
"molecular weight",
"RNA",
"repetitive base sequences",
"reassociation",
"DNA3",
"DNA1",
"sequence",
"elucidation",
"molecules",
"current data",
"pairs",
"presence",
"study",
"Table 1",
"addition",
"T4",
"rate",
"step",
"arrangement",
"experiments",
"weight",
"preliminary experiments",
"Thomas et al",
"data",
"complexity",
"results",
"report",
"inverse proportionality",
"units",
"et al",
"cyclization",
"method",
"al",
"purpose",
"proportionality",
"method of cyclization"
],
"name": "Cyclization of Chloroplast DNA Fragments of Chlamydomonas reinhardi",
"pagination": "76-78",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1000139263"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/newbio238076a0"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"4505413"
]
}
],
"sameAs": [
"https://doi.org/10.1038/newbio238076a0",
"https://app.dimensions.ai/details/publication/pub.1000139263"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_127.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/newbio238076a0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/newbio238076a0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/newbio238076a0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/newbio238076a0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/newbio238076a0'
This table displays all metadata directly associated to this object as RDF triples.
164 TRIPLES
21 PREDICATES
97 URIs
87 LITERALS
16 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/newbio238076a0 | schema:about | N034f9bff024f4b6bbd8013bf8e4cc6d4 |
2 | ″ | ″ | N1dbbbb78ffc141d2837b0a8ec0ac4d80 |
3 | ″ | ″ | N7d4cbb84272643c7b3f617facb83fa2a |
4 | ″ | ″ | N8d7d002a4c664f75a927044a7afa1162 |
5 | ″ | ″ | Nc681f603497b46afa0e555b23895a28b |
6 | ″ | ″ | Nc8f6c2afa0354f439444905f0b727b7a |
7 | ″ | ″ | Nd7a6fc3379054b4c96a164303bed18f1 |
8 | ″ | ″ | Nf1585dd3a94a4f16b7c9455edabdcc1b |
9 | ″ | ″ | Nf9866835bb70481d95f6167515b6634a |
10 | ″ | ″ | anzsrc-for:06 |
11 | ″ | ″ | anzsrc-for:0604 |
12 | ″ | schema:author | N04b430a7391d4966a4a3b1c89fc64972 |
13 | ″ | schema:citation | sg:pub.10.1007/bf00284946 |
14 | ″ | ″ | sg:pub.10.1038/220786a0 |
15 | ″ | schema:datePublished | 1972-07 |
16 | ″ | schema:datePublishedReg | 1972-07-01 |
17 | ″ | schema:description | THE chloroplast of the unicellular green alga Chlamydomonas reinhardi contains about 5 × 109 daltons of DNA1. Preliminary experiments (Surzycki and Rochaix, unpublished results) show that some DNA molecules of this chloroplast have a molecular weight of at least 200 × 106. The reassociation rate of this DNA is slightly lower than that of T4 DNA2,3. Assuming an inverse proportionality between the rate of reassociation and the genome complexity, one can estimate that the chloroplast DNA is made of about twenty-five similar copies of 2 × 108 daltons each2,3. In addition, 10% of the chloroplast DNA of C. reinhardi seems to reassociate more swiftly than the bulk chloroplast DNA3 and this fast reassociation rate suggests repetitive units of 1–10 × 106 daltons. Table 1 summarizes the current data on various chloroplast DNAs. Steps toward the elucidation of the arrangement of some of the chloroplast genes of C. reinhardi have been made by transcriptional mapping13 and by hybridization experiments14, and the results of these studies suggest that the genes for the 16S and 23S chloroplast ribosomal RNAs are tandemly arranged in two to three pairs in each of the twenty-five copies. This study was aimed at testing the chloroplast DNA for repetitive base sequences whose presence was suggested by the reports mentioned3,13,14. For this purpose the method of cyclization of DNA fragments developed by Thomas et al.15 was used. |
18 | ″ | schema:genre | article |
19 | ″ | schema:isAccessibleForFree | false |
20 | ″ | schema:isPartOf | N14a9180db32b40d48c79a87d53bd5314 |
21 | ″ | ″ | N79d2fcb1430545579430647b09f5c94c |
22 | ″ | ″ | sg:journal.1018957 |
23 | ″ | schema:keywords | C. reinhardi |
24 | ″ | ″ | Chlamydomonas reinhardi |
25 | ″ | ″ | DNA |
26 | ″ | ″ | DNA fragments |
27 | ″ | ″ | DNA molecules |
28 | ″ | ″ | DNA1 |
29 | ″ | ″ | DNA3 |
30 | ″ | ″ | RNA |
31 | ″ | ″ | T4 |
32 | ″ | ″ | Table 1 |
33 | ″ | ″ | Thomas et al |
34 | ″ | ″ | addition |
35 | ″ | ″ | al |
36 | ″ | ″ | arrangement |
37 | ″ | ″ | base sequence |
38 | ″ | ″ | chloroplast DNA |
39 | ″ | ″ | chloroplast DNA fragments |
40 | ″ | ″ | chloroplast genes |
41 | ″ | ″ | chloroplast ribosomal RNA |
42 | ″ | ″ | chloroplasts |
43 | ″ | ″ | complexity |
44 | ″ | ″ | copies |
45 | ″ | ″ | current data |
46 | ″ | ″ | cyclization |
47 | ″ | ″ | daltons |
48 | ″ | ″ | data |
49 | ″ | ″ | elucidation |
50 | ″ | ″ | et al |
51 | ″ | ″ | experiments |
52 | ″ | ″ | fragments |
53 | ″ | ″ | genes |
54 | ″ | ″ | genome complexity |
55 | ″ | ″ | green alga Chlamydomonas reinhardi |
56 | ″ | ″ | inverse proportionality |
57 | ″ | ″ | method |
58 | ″ | ″ | method of cyclization |
59 | ″ | ″ | molecular weight |
60 | ″ | ″ | molecules |
61 | ″ | ″ | pairs |
62 | ″ | ″ | preliminary experiments |
63 | ″ | ″ | presence |
64 | ″ | ″ | proportionality |
65 | ″ | ″ | purpose |
66 | ″ | ″ | rate |
67 | ″ | ″ | rate of reassociation |
68 | ″ | ″ | reassociation |
69 | ″ | ″ | reassociation rate |
70 | ″ | ″ | reinhardi |
71 | ″ | ″ | repetitive base sequences |
72 | ″ | ″ | repetitive units |
73 | ″ | ″ | report |
74 | ″ | ″ | results |
75 | ″ | ″ | ribosomal RNA |
76 | ″ | ″ | sequence |
77 | ″ | ″ | similar copies |
78 | ″ | ″ | step |
79 | ″ | ″ | study |
80 | ″ | ″ | unicellular green alga Chlamydomonas reinhardi |
81 | ″ | ″ | units |
82 | ″ | ″ | weight |
83 | ″ | schema:name | Cyclization of Chloroplast DNA Fragments of Chlamydomonas reinhardi |
84 | ″ | schema:pagination | 76-78 |
85 | ″ | schema:productId | N430bad1d980449e7b1ffd4de1919cf03 |
86 | ″ | ″ | N4f26e1b7ce60497b804e525f9299da6b |
87 | ″ | ″ | Ne29f80b6d4e24f7aa15e73d330ce34d8 |
88 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000139263 |
89 | ″ | ″ | https://doi.org/10.1038/newbio238076a0 |
90 | ″ | schema:sdDatePublished | 2022-08-04T16:49 |
91 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
92 | ″ | schema:sdPublisher | N940e18d3cbad4d0d80b788fd59537cef |
93 | ″ | schema:url | https://doi.org/10.1038/newbio238076a0 |
94 | ″ | sgo:license | sg:explorer/license/ |
95 | ″ | sgo:sdDataset | articles |
96 | ″ | rdf:type | schema:ScholarlyArticle |
97 | N0307d292d6284c41985db0e7bbddb64f | schema:affiliation | grid-institutes:grid.38142.3c |
98 | ″ | schema:familyName | ROCHAIX |
99 | ″ | schema:givenName | J. D. |
100 | ″ | rdf:type | schema:Person |
101 | N034f9bff024f4b6bbd8013bf8e4cc6d4 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
102 | ″ | schema:name | Microscopy, Electron |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | N04b430a7391d4966a4a3b1c89fc64972 | rdf:first | N0307d292d6284c41985db0e7bbddb64f |
105 | ″ | rdf:rest | rdf:nil |
106 | N14a9180db32b40d48c79a87d53bd5314 | schema:volumeNumber | 238 |
107 | ″ | rdf:type | schema:PublicationVolume |
108 | N1dbbbb78ffc141d2837b0a8ec0ac4d80 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
109 | ″ | schema:name | Nucleic Acid Denaturation |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | N430bad1d980449e7b1ffd4de1919cf03 | schema:name | pubmed_id |
112 | ″ | schema:value | 4505413 |
113 | ″ | rdf:type | schema:PropertyValue |
114 | N4f26e1b7ce60497b804e525f9299da6b | schema:name | dimensions_id |
115 | ″ | schema:value | pub.1000139263 |
116 | ″ | rdf:type | schema:PropertyValue |
117 | N79d2fcb1430545579430647b09f5c94c | schema:issueNumber | 81 |
118 | ″ | rdf:type | schema:PublicationIssue |
119 | N7d4cbb84272643c7b3f617facb83fa2a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
120 | ″ | schema:name | Chlorophyta |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | N8d7d002a4c664f75a927044a7afa1162 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
123 | ″ | schema:name | DNA |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | N940e18d3cbad4d0d80b788fd59537cef | schema:name | Springer Nature - SN SciGraph project |
126 | ″ | rdf:type | schema:Organization |
127 | Nc681f603497b46afa0e555b23895a28b | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
128 | ″ | schema:name | Base Sequence |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | Nc8f6c2afa0354f439444905f0b727b7a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
131 | ″ | schema:name | Chlamydomonas |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | Nd7a6fc3379054b4c96a164303bed18f1 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
134 | ″ | schema:name | Chloroplasts |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | Ne29f80b6d4e24f7aa15e73d330ce34d8 | schema:name | doi |
137 | ″ | schema:value | 10.1038/newbio238076a0 |
138 | ″ | rdf:type | schema:PropertyValue |
139 | Nf1585dd3a94a4f16b7c9455edabdcc1b | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
140 | ″ | schema:name | Deoxyribonucleases |
141 | ″ | rdf:type | schema:DefinedTerm |
142 | Nf9866835bb70481d95f6167515b6634a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
143 | ″ | schema:name | Plants |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
146 | ″ | schema:name | Biological Sciences |
147 | ″ | rdf:type | schema:DefinedTerm |
148 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
149 | ″ | schema:name | Genetics |
150 | ″ | rdf:type | schema:DefinedTerm |
151 | sg:journal.1018957 | schema:issn | 0028-0836 |
152 | ″ | ″ | 1476-4687 |
153 | ″ | schema:name | Nature |
154 | ″ | schema:publisher | Springer Nature |
155 | ″ | rdf:type | schema:Periodical |
156 | sg:pub.10.1007/bf00284946 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029858968 |
157 | ″ | ″ | https://doi.org/10.1007/bf00284946 |
158 | ″ | rdf:type | schema:CreativeWork |
159 | sg:pub.10.1038/220786a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040971755 |
160 | ″ | ″ | https://doi.org/10.1038/220786a0 |
161 | ″ | rdf:type | schema:CreativeWork |
162 | grid-institutes:grid.38142.3c | schema:alternateName | Biological Laboratories, Harvard University, 02138, Cambridge, Massachusetts |
163 | ″ | schema:name | Biological Laboratories, Harvard University, 02138, Cambridge, Massachusetts |
164 | ″ | rdf:type | schema:Organization |