Role of Contractile Microfilaments in Macrophage Movement and Endocytosis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1971-08

AUTHORS

A. C. ALLISON, P. DAVIES, S. DE PETRIS

ABSTRACT

PHAGOCYTOSIS of bacteria and other large particles and pinocytosis of colloids—two processes collectively termed endocytosis—are among the characteristic properties of macrophages. When mouse peritoneal macrophages in culture are observed by phase contrast microscopy, most small endocytotic vesicles (pinosomes) are seen to be formed in the region of ruffled membrane activity, usually in a pseudopod1. The phase-lucent pinosomes move rapidly towards the Golgi region where they unite with phase-dense granules to form secondary lysosomes. Although there is evidence that both phagocytosis and pinocytosis in macrophages have a high temperature coefficient and require metabolic energy1, the mechanism of endocytosis is unknown. Clearly, movement of the plasma membrane and directional movement of pinosomes is involved. During the past few years attention has been drawn to the apparent association in many cells between movement and the presence of contractile microfilaments of about 50 Â diameter2,3. Some of these are actin-like and can bind heavy meromyosin to give distinctive “arrowhead” structures in electron micrographs4. One of us (S. de P., in preparation) has found that the peripheral or cortical cytoplasm of macrophages contains a network of microfilaments, some of which may be inserted into the plasma membrane. These filaments bind heavy meromyosin (Figs. 1 and 2), and details of their structure and disposition will be published later. More... »

PAGES

153-155

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/newbio232153a0

DOI

http://dx.doi.org/10.1038/newbio232153a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015561353

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/4937093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Guinea Pigs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Macrophages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Phase-Contrast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycotoxins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myosin Subfragments", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phagocytosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pinocytosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Clinical Research Centre, Harrow, Middlesex", 
          "id": "http://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Clinical Research Centre, Harrow, Middlesex"
          ], 
          "type": "Organization"
        }, 
        "familyName": "ALLISON", 
        "givenName": "A. C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical Research Centre, Harrow, Middlesex", 
          "id": "http://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Clinical Research Centre, Harrow, Middlesex"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DAVIES", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical Research Centre, Harrow, Middlesex", 
          "id": "http://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Clinical Research Centre, Harrow, Middlesex"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DE PETRIS", 
        "givenName": "S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/213261a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050067067", 
          "https://doi.org/10.1038/213261a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01666538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014196940", 
          "https://doi.org/10.1007/bf01666538"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1971-08", 
    "datePublishedReg": "1971-08-01", 
    "description": "PHAGOCYTOSIS of bacteria and other large particles and pinocytosis of colloids\u2014two processes collectively termed endocytosis\u2014are among the characteristic properties of macrophages. When mouse peritoneal macrophages in culture are observed by phase contrast microscopy, most small endocytotic vesicles (pinosomes) are seen to be formed in the region of ruffled membrane activity, usually in a pseudopod1. The phase-lucent pinosomes move rapidly towards the Golgi region where they unite with phase-dense granules to form secondary lysosomes. Although there is evidence that both phagocytosis and pinocytosis in macrophages have a high temperature coefficient and require metabolic energy1, the mechanism of endocytosis is unknown. Clearly, movement of the plasma membrane and directional movement of pinosomes is involved. During the past few years attention has been drawn to the apparent association in many cells between movement and the presence of contractile microfilaments of about 50 \u00c2 diameter2,3. Some of these are actin-like and can bind heavy meromyosin to give distinctive \u201carrowhead\u201d structures in electron micrographs4. One of us (S. de P., in preparation) has found that the peripheral or cortical cytoplasm of macrophages contains a network of microfilaments, some of which may be inserted into the plasma membrane. These filaments bind heavy meromyosin (Figs. 1 and 2), and details of their structure and disposition will be published later.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/newbio232153a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "31", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "232"
      }
    ], 
    "keywords": [
      "plasma membrane", 
      "phase-dense granules", 
      "mechanism of endocytosis", 
      "network of microfilaments", 
      "phagocytosis of bacteria", 
      "contractile microfilaments", 
      "endocytotic vesicles", 
      "heavy meromyosin", 
      "Golgi region", 
      "cortical cytoplasm", 
      "macrophage movement", 
      "mouse peritoneal macrophages", 
      "endocytosis", 
      "phase contrast microscopy", 
      "directional movement", 
      "membrane activity", 
      "microfilaments", 
      "secondary lysosomes", 
      "pinosomes", 
      "pinocytosis", 
      "contrast microscopy", 
      "peritoneal macrophages", 
      "phagocytosis", 
      "membrane", 
      "macrophages", 
      "meromyosin", 
      "cytoplasm", 
      "lysosomes", 
      "vesicles", 
      "bacteria", 
      "filaments", 
      "cells", 
      "region", 
      "apparent association", 
      "granules", 
      "mechanism", 
      "role", 
      "activity", 
      "structure", 
      "culture", 
      "years attention", 
      "movement", 
      "microscopy", 
      "presence", 
      "evidence", 
      "characteristic properties", 
      "association", 
      "arrowheads", 
      "process", 
      "detail", 
      "network", 
      "properties", 
      "high temperature coefficient", 
      "disposition", 
      "attention", 
      "energy1", 
      "large particles", 
      "particles", 
      "coefficient", 
      "temperature coefficient"
    ], 
    "name": "Role of Contractile Microfilaments in Macrophage Movement and Endocytosis", 
    "pagination": "153-155", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015561353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/newbio232153a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "4937093"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/newbio232153a0", 
      "https://app.dimensions.ai/details/publication/pub.1015561353"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_146.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/newbio232153a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/newbio232153a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/newbio232153a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/newbio232153a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/newbio232153a0'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      102 URIs      92 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/newbio232153a0 schema:about N0049be5de6d241b996b09c5dd91d1590
2 N1441011129ce4cbabc2ec53a996c9139
3 N2d230091e0b4497092e1b43c32c2c40f
4 N3ba6edafef8e4c6490252c2d3ec93c45
5 N3f076762504b467ea422a8446668fd26
6 N6cab56a4f3fa481bb4b3a1524ea94f66
7 N7257a19cdc3d4ea9a5bddd0dc127e533
8 N85baab0935f74a779cbafac3155ee716
9 N8a5884d1900448e6921bfd4ec3dd71ce
10 N91507e1bb0254ad48b5ea88951080259
11 N91f39ed00c6143e896abfeaa70d7ce35
12 Nc96e7d0d487547bc94d482d1ae554cce
13 Nde7b6e7ee57c4623a7b86cb8299c8564
14 Nf19bad3477e84649b98579993fea7aa7
15 anzsrc-for:06
16 anzsrc-for:0601
17 schema:author Nbb194b1b53054648bfc04788923b8627
18 schema:citation sg:pub.10.1007/bf01666538
19 sg:pub.10.1038/213261a0
20 schema:datePublished 1971-08
21 schema:datePublishedReg 1971-08-01
22 schema:description PHAGOCYTOSIS of bacteria and other large particles and pinocytosis of colloids—two processes collectively termed endocytosis—are among the characteristic properties of macrophages. When mouse peritoneal macrophages in culture are observed by phase contrast microscopy, most small endocytotic vesicles (pinosomes) are seen to be formed in the region of ruffled membrane activity, usually in a pseudopod1. The phase-lucent pinosomes move rapidly towards the Golgi region where they unite with phase-dense granules to form secondary lysosomes. Although there is evidence that both phagocytosis and pinocytosis in macrophages have a high temperature coefficient and require metabolic energy1, the mechanism of endocytosis is unknown. Clearly, movement of the plasma membrane and directional movement of pinosomes is involved. During the past few years attention has been drawn to the apparent association in many cells between movement and the presence of contractile microfilaments of about 50 Â diameter2,3. Some of these are actin-like and can bind heavy meromyosin to give distinctive “arrowhead” structures in electron micrographs4. One of us (S. de P., in preparation) has found that the peripheral or cortical cytoplasm of macrophages contains a network of microfilaments, some of which may be inserted into the plasma membrane. These filaments bind heavy meromyosin (Figs. 1 and 2), and details of their structure and disposition will be published later.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N113bbac36fa14c7ab5dff9ddff416c45
26 N31328782cfd74d068500128cc3ba4328
27 sg:journal.1018957
28 schema:keywords Golgi region
29 activity
30 apparent association
31 arrowheads
32 association
33 attention
34 bacteria
35 cells
36 characteristic properties
37 coefficient
38 contractile microfilaments
39 contrast microscopy
40 cortical cytoplasm
41 culture
42 cytoplasm
43 detail
44 directional movement
45 disposition
46 endocytosis
47 endocytotic vesicles
48 energy1
49 evidence
50 filaments
51 granules
52 heavy meromyosin
53 high temperature coefficient
54 large particles
55 lysosomes
56 macrophage movement
57 macrophages
58 mechanism
59 mechanism of endocytosis
60 membrane
61 membrane activity
62 meromyosin
63 microfilaments
64 microscopy
65 mouse peritoneal macrophages
66 movement
67 network
68 network of microfilaments
69 particles
70 peritoneal macrophages
71 phagocytosis
72 phagocytosis of bacteria
73 phase contrast microscopy
74 phase-dense granules
75 pinocytosis
76 pinosomes
77 plasma membrane
78 presence
79 process
80 properties
81 region
82 role
83 secondary lysosomes
84 structure
85 temperature coefficient
86 vesicles
87 years attention
88 schema:name Role of Contractile Microfilaments in Macrophage Movement and Endocytosis
89 schema:pagination 153-155
90 schema:productId N39785888e31149e1ac29261563b5b072
91 N7d8fc2e9d672473f9d14a471d7c3d085
92 Ncbb9735490584251be71a3c94bdd3bb1
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015561353
94 https://doi.org/10.1038/newbio232153a0
95 schema:sdDatePublished 2022-08-04T16:49
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N25491fd68f884faaa9843ae44fc4a911
98 schema:url https://doi.org/10.1038/newbio232153a0
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N0049be5de6d241b996b09c5dd91d1590 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Cell Movement
104 rdf:type schema:DefinedTerm
105 N0314cc2fd12246f6ae273409d718a3d5 schema:affiliation grid-institutes:grid.430387.b
106 schema:familyName DE PETRIS
107 schema:givenName S.
108 rdf:type schema:Person
109 N113bbac36fa14c7ab5dff9ddff416c45 schema:issueNumber 31
110 rdf:type schema:PublicationIssue
111 N1441011129ce4cbabc2ec53a996c9139 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Microscopy, Phase-Contrast
113 rdf:type schema:DefinedTerm
114 N25491fd68f884faaa9843ae44fc4a911 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N2d230091e0b4497092e1b43c32c2c40f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Microscopy, Electron
118 rdf:type schema:DefinedTerm
119 N31328782cfd74d068500128cc3ba4328 schema:volumeNumber 232
120 rdf:type schema:PublicationVolume
121 N39785888e31149e1ac29261563b5b072 schema:name dimensions_id
122 schema:value pub.1015561353
123 rdf:type schema:PropertyValue
124 N3ba6edafef8e4c6490252c2d3ec93c45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Myosin Subfragments
126 rdf:type schema:DefinedTerm
127 N3f076762504b467ea422a8446668fd26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Macrophages
129 rdf:type schema:DefinedTerm
130 N5e6035a76fbf4ddaa351eba5dc4c91a0 rdf:first N0314cc2fd12246f6ae273409d718a3d5
131 rdf:rest rdf:nil
132 N6cab56a4f3fa481bb4b3a1524ea94f66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Phagocytosis
134 rdf:type schema:DefinedTerm
135 N7257a19cdc3d4ea9a5bddd0dc127e533 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Protein Binding
137 rdf:type schema:DefinedTerm
138 N78cbcb6fef3d4480bcbda0414979ba7c rdf:first Nef8ff09c3b5b4042a150973e310de9ca
139 rdf:rest N5e6035a76fbf4ddaa351eba5dc4c91a0
140 N7d8fc2e9d672473f9d14a471d7c3d085 schema:name doi
141 schema:value 10.1038/newbio232153a0
142 rdf:type schema:PropertyValue
143 N85baab0935f74a779cbafac3155ee716 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Guinea Pigs
145 rdf:type schema:DefinedTerm
146 N8a5884d1900448e6921bfd4ec3dd71ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Muscle Proteins
148 rdf:type schema:DefinedTerm
149 N90bf8a929bc441bcab1df12b5fd97c7f schema:affiliation grid-institutes:grid.430387.b
150 schema:familyName ALLISON
151 schema:givenName A. C.
152 rdf:type schema:Person
153 N91507e1bb0254ad48b5ea88951080259 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Actins
155 rdf:type schema:DefinedTerm
156 N91f39ed00c6143e896abfeaa70d7ce35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Mycotoxins
158 rdf:type schema:DefinedTerm
159 Nbb194b1b53054648bfc04788923b8627 rdf:first N90bf8a929bc441bcab1df12b5fd97c7f
160 rdf:rest N78cbcb6fef3d4480bcbda0414979ba7c
161 Nc96e7d0d487547bc94d482d1ae554cce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Mice
163 rdf:type schema:DefinedTerm
164 Ncbb9735490584251be71a3c94bdd3bb1 schema:name pubmed_id
165 schema:value 4937093
166 rdf:type schema:PropertyValue
167 Nde7b6e7ee57c4623a7b86cb8299c8564 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Animals
169 rdf:type schema:DefinedTerm
170 Nef8ff09c3b5b4042a150973e310de9ca schema:affiliation grid-institutes:grid.430387.b
171 schema:familyName DAVIES
172 schema:givenName P.
173 rdf:type schema:Person
174 Nf19bad3477e84649b98579993fea7aa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Pinocytosis
176 rdf:type schema:DefinedTerm
177 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
178 schema:name Biological Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
181 schema:name Biochemistry and Cell Biology
182 rdf:type schema:DefinedTerm
183 sg:journal.1018957 schema:issn 0028-0836
184 1476-4687
185 schema:name Nature
186 schema:publisher Springer Nature
187 rdf:type schema:Periodical
188 sg:pub.10.1007/bf01666538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014196940
189 https://doi.org/10.1007/bf01666538
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/213261a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050067067
192 https://doi.org/10.1038/213261a0
193 rdf:type schema:CreativeWork
194 grid-institutes:grid.430387.b schema:alternateName Clinical Research Centre, Harrow, Middlesex
195 schema:name Clinical Research Centre, Harrow, Middlesex
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...