Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10-19

AUTHORS

Byung-Kuk Yoo, Oh-Hoon Kwon, Haihua Liu, Jau Tang, Ahmed H. Zewail

ABSTRACT

The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (η) in the evolution process. It is found that the temporal behaviour of η exhibits unique ‘two-step’ dynamics, with a robust ‘plateau’ that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson–Mehl–Avrami–Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation. More... »

PAGES

8639

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms9639

DOI

http://dx.doi.org/10.1038/ncomms9639

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000656816

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26478194


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoo", 
        "givenName": "Byung-Kuk", 
        "id": "sg:person.0577027303.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577027303.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present address: Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology and Center for Soft and Living Matter, Institute for Basic Science, Ulsan 689-798, Republic of Korea.", 
          "id": "http://www.grid.ac/institutes/grid.410720.0", 
          "name": [
            "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA", 
            "Present address: Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology and Center for Soft and Living Matter, Institute for Basic Science, Ulsan 689-798, Republic of Korea."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Oh-Hoon", 
        "id": "sg:person.07620753600.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07620753600.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Haihua", 
        "id": "sg:person.0700176030.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700176030.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Jau", 
        "id": "sg:person.01237524155.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237524155.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zewail", 
        "givenName": "Ahmed H.", 
        "id": "sg:person.01152075504.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152075504.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11164-009-0080-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049472342", 
          "https://doi.org/10.1007/s11164-009-0080-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019627345", 
          "https://doi.org/10.1038/ncomms3371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-30160-0_7771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009139332", 
          "https://doi.org/10.1007/978-0-387-30160-0_7771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/238037a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011069243", 
          "https://doi.org/10.1038/238037a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025421157", 
          "https://doi.org/10.1038/35104607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04074-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025790540", 
          "https://doi.org/10.1007/978-3-662-04074-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/353737a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014356537", 
          "https://doi.org/10.1038/353737a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040198457", 
          "https://doi.org/10.1038/35065045"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10-19", 
    "datePublishedReg": "2015-10-19", 
    "description": "The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (\u03b7) in the evolution process. It is found that the temporal behaviour of \u03b7 exhibits unique \u2018two-step\u2019 dynamics, with a robust \u2018plateau\u2019 that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson\u2013Mehl\u2013Avrami\u2013Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms9639", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "phase transition", 
      "microscopic probe", 
      "stretched-exponential function", 
      "diffraction profiles", 
      "space", 
      "temporal behavior", 
      "orders of magnitude", 
      "equations", 
      "isothermal process", 
      "crystalline ordering", 
      "direct imaging", 
      "evolution process", 
      "range of time", 
      "ordering", 
      "liquid state", 
      "Johnson-Mehl", 
      "crystal phase transition", 
      "transition", 
      "transformation", 
      "dynamics", 
      "specific degree", 
      "two-step", 
      "such behavior", 
      "crystal state", 
      "general phenomenon", 
      "state", 
      "Avrami\u2013Kolmogorov equation", 
      "phenomenon", 
      "time", 
      "nanofilms", 
      "behavior", 
      "constants", 
      "function", 
      "evolution", 
      "nucleation step", 
      "crystal phase", 
      "structural transformation", 
      "order", 
      "magnitude", 
      "crystal transformation", 
      "titanium dioxide nanofilm", 
      "step", 
      "different times", 
      "process", 
      "microseconds", 
      "rate constants", 
      "nucleation", 
      "liquid", 
      "phase", 
      "degree", 
      "range", 
      "profile", 
      "probe", 
      "visualization", 
      "crystallinity", 
      "presence", 
      "precursors", 
      "melt", 
      "plateau", 
      "imaging"
    ], 
    "name": "Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions", 
    "pagination": "8639", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000656816"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms9639"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26478194"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms9639", 
      "https://app.dimensions.ai/details/publication/pub.1000656816"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_656.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms9639"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms9639'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms9639'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms9639'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms9639'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      22 PREDICATES      94 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms9639 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nbb027390a760459db59290067eacdec8
4 schema:citation sg:pub.10.1007/978-0-387-30160-0_7771
5 sg:pub.10.1007/978-3-662-04074-4
6 sg:pub.10.1007/s11164-009-0080-2
7 sg:pub.10.1038/238037a0
8 sg:pub.10.1038/35065045
9 sg:pub.10.1038/35104607
10 sg:pub.10.1038/353737a0
11 sg:pub.10.1038/ncomms3371
12 schema:datePublished 2015-10-19
13 schema:datePublishedReg 2015-10-19
14 schema:description The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (η) in the evolution process. It is found that the temporal behaviour of η exhibits unique ‘two-step’ dynamics, with a robust ‘plateau’ that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson–Mehl–Avrami–Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N02e4fb06f2284ba8940b98f8f87cbbba
19 Nbe913fd2a36a4b7490b8859f138dc592
20 sg:journal.1043282
21 schema:keywords Avrami–Kolmogorov equation
22 Johnson-Mehl
23 behavior
24 constants
25 crystal phase
26 crystal phase transition
27 crystal state
28 crystal transformation
29 crystalline ordering
30 crystallinity
31 degree
32 different times
33 diffraction profiles
34 direct imaging
35 dynamics
36 equations
37 evolution
38 evolution process
39 function
40 general phenomenon
41 imaging
42 isothermal process
43 liquid
44 liquid state
45 magnitude
46 melt
47 microscopic probe
48 microseconds
49 nanofilms
50 nucleation
51 nucleation step
52 order
53 ordering
54 orders of magnitude
55 phase
56 phase transition
57 phenomenon
58 plateau
59 precursors
60 presence
61 probe
62 process
63 profile
64 range
65 range of time
66 rate constants
67 space
68 specific degree
69 state
70 step
71 stretched-exponential function
72 structural transformation
73 such behavior
74 temporal behavior
75 time
76 titanium dioxide nanofilm
77 transformation
78 transition
79 two-step
80 visualization
81 schema:name Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions
82 schema:pagination 8639
83 schema:productId N2de7a6d32cab4565b7790bf108408ff6
84 N5411bcaa33a2428d9322cef1c72ade48
85 Nf9c1447e66674b0c914a4887e2f65a72
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000656816
87 https://doi.org/10.1038/ncomms9639
88 schema:sdDatePublished 2022-05-10T10:08
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N01a2bc5eb3514395937856f65dc99697
91 schema:url https://doi.org/10.1038/ncomms9639
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N01a2bc5eb3514395937856f65dc99697 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N01a5a273fb2a4e41a21ef1e71e58444c rdf:first sg:person.0700176030.84
98 rdf:rest Nc073900c2a6040bea17ecf75a5c97bc5
99 N02e4fb06f2284ba8940b98f8f87cbbba schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N2de7a6d32cab4565b7790bf108408ff6 schema:name pubmed_id
102 schema:value 26478194
103 rdf:type schema:PropertyValue
104 N5411bcaa33a2428d9322cef1c72ade48 schema:name dimensions_id
105 schema:value pub.1000656816
106 rdf:type schema:PropertyValue
107 N7dae01f3752e4469a1ee8e33dfd73efd rdf:first sg:person.07620753600.59
108 rdf:rest N01a5a273fb2a4e41a21ef1e71e58444c
109 Nb72101c3392549ac8d09f5922a584b56 rdf:first sg:person.01152075504.33
110 rdf:rest rdf:nil
111 Nbb027390a760459db59290067eacdec8 rdf:first sg:person.0577027303.04
112 rdf:rest N7dae01f3752e4469a1ee8e33dfd73efd
113 Nbe913fd2a36a4b7490b8859f138dc592 schema:volumeNumber 6
114 rdf:type schema:PublicationVolume
115 Nc073900c2a6040bea17ecf75a5c97bc5 rdf:first sg:person.01237524155.21
116 rdf:rest Nb72101c3392549ac8d09f5922a584b56
117 Nf9c1447e66674b0c914a4887e2f65a72 schema:name doi
118 schema:value 10.1038/ncomms9639
119 rdf:type schema:PropertyValue
120 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
121 schema:name Chemical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
124 schema:name Physical Chemistry (incl. Structural)
125 rdf:type schema:DefinedTerm
126 sg:journal.1043282 schema:issn 2041-1723
127 schema:name Nature Communications
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.01152075504.33 schema:affiliation grid-institutes:grid.20861.3d
131 schema:familyName Zewail
132 schema:givenName Ahmed H.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152075504.33
134 rdf:type schema:Person
135 sg:person.01237524155.21 schema:affiliation grid-institutes:grid.20861.3d
136 schema:familyName Tang
137 schema:givenName Jau
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237524155.21
139 rdf:type schema:Person
140 sg:person.0577027303.04 schema:affiliation grid-institutes:grid.20861.3d
141 schema:familyName Yoo
142 schema:givenName Byung-Kuk
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577027303.04
144 rdf:type schema:Person
145 sg:person.0700176030.84 schema:affiliation grid-institutes:grid.20861.3d
146 schema:familyName Liu
147 schema:givenName Haihua
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700176030.84
149 rdf:type schema:Person
150 sg:person.07620753600.59 schema:affiliation grid-institutes:grid.410720.0
151 schema:familyName Kwon
152 schema:givenName Oh-Hoon
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07620753600.59
154 rdf:type schema:Person
155 sg:pub.10.1007/978-0-387-30160-0_7771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009139332
156 https://doi.org/10.1007/978-0-387-30160-0_7771
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/978-3-662-04074-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025790540
159 https://doi.org/10.1007/978-3-662-04074-4
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11164-009-0080-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049472342
162 https://doi.org/10.1007/s11164-009-0080-2
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/238037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011069243
165 https://doi.org/10.1038/238037a0
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/35065045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040198457
168 https://doi.org/10.1038/35065045
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/35104607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025421157
171 https://doi.org/10.1038/35104607
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/353737a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014356537
174 https://doi.org/10.1038/353737a0
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ncomms3371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019627345
177 https://doi.org/10.1038/ncomms3371
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.20861.3d schema:alternateName Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA
180 schema:name Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA
181 rdf:type schema:Organization
182 grid-institutes:grid.410720.0 schema:alternateName Present address: Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology and Center for Soft and Living Matter, Institute for Basic Science, Ulsan 689-798, Republic of Korea.
183 schema:name Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA
184 Present address: Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology and Center for Soft and Living Matter, Institute for Basic Science, Ulsan 689-798, Republic of Korea.
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...