Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10-19

AUTHORS

Byung-Kuk Yoo, Oh-Hoon Kwon, Haihua Liu, Jau Tang, Ahmed H. Zewail

ABSTRACT

The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (η) in the evolution process. It is found that the temporal behaviour of η exhibits unique 'two-step' dynamics, with a robust 'plateau' that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson-Mehl-Avrami-Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation. More... »

PAGES

8639

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms9639

DOI

http://dx.doi.org/10.1038/ncomms9639

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000656816

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26478194


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoo", 
        "givenName": "Byung-Kuk", 
        "id": "sg:person.0577027303.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577027303.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Oh-Hoon", 
        "id": "sg:person.07620753600.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07620753600.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Haihua", 
        "id": "sg:person.0700176030.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700176030.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Jau", 
        "id": "sg:person.01237524155.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237524155.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zewail", 
        "givenName": "Ahmed H.", 
        "id": "sg:person.01152075504.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152075504.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/238037a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011069243", 
          "https://doi.org/10.1038/238037a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/353737a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014356537", 
          "https://doi.org/10.1038/353737a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025421157", 
          "https://doi.org/10.1038/35104607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019627345", 
          "https://doi.org/10.1038/ncomms3371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040198457", 
          "https://doi.org/10.1038/35065045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04074-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025790540", 
          "https://doi.org/10.1007/978-3-662-04074-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-30160-0_7771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009139332", 
          "https://doi.org/10.1007/978-0-387-30160-0_7771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11164-009-0080-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049472342", 
          "https://doi.org/10.1007/s11164-009-0080-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10-19", 
    "datePublishedReg": "2015-10-19", 
    "description": "The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (\u03b7) in the evolution process. It is found that the temporal behaviour of \u03b7 exhibits unique 'two-step' dynamics, with a robust 'plateau' that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson-Mehl-Avrami-Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation. ", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms9639", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "phase transition", 
      "stretched-exponential function", 
      "microscopic probe", 
      "diffraction profiles", 
      "crystalline ordering", 
      "space", 
      "temporal behavior", 
      "orders of magnitude", 
      "equations", 
      "isothermal process", 
      "direct imaging", 
      "evolution process", 
      "crystal phase transition", 
      "ordering", 
      "liquid state", 
      "Johnson-Mehl", 
      "range of time", 
      "transition", 
      "transformation", 
      "dynamics", 
      "specific degree", 
      "two-step", 
      "such behavior", 
      "crystal state", 
      "state", 
      "behavior", 
      "Avrami\u2013Kolmogorov equation", 
      "general phenomenon", 
      "phenomenon", 
      "time", 
      "nanofilms", 
      "nucleation step", 
      "constants", 
      "function", 
      "evolution", 
      "titanium dioxide nanofilms", 
      "crystal phase", 
      "structural transformation", 
      "process", 
      "microseconds", 
      "order", 
      "magnitude", 
      "crystal transformation", 
      "step", 
      "rate constants", 
      "nucleation", 
      "liquid", 
      "phase", 
      "different times", 
      "degree", 
      "range", 
      "profile", 
      "crystallinity", 
      "visualization", 
      "presence", 
      "precursors", 
      "melt", 
      "probe", 
      "plateau", 
      "imaging", 
      "amorphous titanium dioxide nanofilm", 
      "dioxide nanofilm", 
      "Single-pulse transient diffraction profiles", 
      "transient diffraction profiles", 
      "ephemeral nucleation"
    ], 
    "name": "Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions", 
    "pagination": "8639", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000656816"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms9639"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26478194"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms9639", 
      "https://app.dimensions.ai/details/publication/pub.1000656816"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_682.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms9639"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms9639'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms9639'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms9639'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms9639'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      22 PREDICATES      99 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms9639 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N0496f815f06d4e3d908732d684c895e6
4 schema:citation sg:pub.10.1007/978-0-387-30160-0_7771
5 sg:pub.10.1007/978-3-662-04074-4
6 sg:pub.10.1007/s11164-009-0080-2
7 sg:pub.10.1038/238037a0
8 sg:pub.10.1038/35065045
9 sg:pub.10.1038/35104607
10 sg:pub.10.1038/353737a0
11 sg:pub.10.1038/ncomms3371
12 schema:datePublished 2015-10-19
13 schema:datePublishedReg 2015-10-19
14 schema:description The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (η) in the evolution process. It is found that the temporal behaviour of η exhibits unique 'two-step' dynamics, with a robust 'plateau' that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson-Mehl-Avrami-Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N53003c165a0c4237aa25de9c002cc5f2
19 Na8c1b3d1fe094fe0acd1665227a5b862
20 sg:journal.1043282
21 schema:keywords Avrami–Kolmogorov equation
22 Johnson-Mehl
23 Single-pulse transient diffraction profiles
24 amorphous titanium dioxide nanofilm
25 behavior
26 constants
27 crystal phase
28 crystal phase transition
29 crystal state
30 crystal transformation
31 crystalline ordering
32 crystallinity
33 degree
34 different times
35 diffraction profiles
36 dioxide nanofilm
37 direct imaging
38 dynamics
39 ephemeral nucleation
40 equations
41 evolution
42 evolution process
43 function
44 general phenomenon
45 imaging
46 isothermal process
47 liquid
48 liquid state
49 magnitude
50 melt
51 microscopic probe
52 microseconds
53 nanofilms
54 nucleation
55 nucleation step
56 order
57 ordering
58 orders of magnitude
59 phase
60 phase transition
61 phenomenon
62 plateau
63 precursors
64 presence
65 probe
66 process
67 profile
68 range
69 range of time
70 rate constants
71 space
72 specific degree
73 state
74 step
75 stretched-exponential function
76 structural transformation
77 such behavior
78 temporal behavior
79 time
80 titanium dioxide nanofilms
81 transformation
82 transient diffraction profiles
83 transition
84 two-step
85 visualization
86 schema:name Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions
87 schema:pagination 8639
88 schema:productId N9aa5b87419924cffbfed22f425111209
89 Nc64bd5f7e85a416092fdb88f5300b5a5
90 Ndec802725c2143fcb4fe5ecb49bd153d
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000656816
92 https://doi.org/10.1038/ncomms9639
93 schema:sdDatePublished 2022-01-01T18:39
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Nefd34f1228494cb382e2aee99471049e
96 schema:url https://doi.org/10.1038/ncomms9639
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N03af16380e3e4c369e91f1ad42ada5a2 rdf:first sg:person.01152075504.33
101 rdf:rest rdf:nil
102 N0496f815f06d4e3d908732d684c895e6 rdf:first sg:person.0577027303.04
103 rdf:rest Ndd16b0ec3ed647cc811f6635ad29f950
104 N3463a3176d3446d3835e51773350dd6e rdf:first sg:person.01237524155.21
105 rdf:rest N03af16380e3e4c369e91f1ad42ada5a2
106 N53003c165a0c4237aa25de9c002cc5f2 schema:volumeNumber 6
107 rdf:type schema:PublicationVolume
108 N9aa5b87419924cffbfed22f425111209 schema:name doi
109 schema:value 10.1038/ncomms9639
110 rdf:type schema:PropertyValue
111 Na8c1b3d1fe094fe0acd1665227a5b862 schema:issueNumber 1
112 rdf:type schema:PublicationIssue
113 Nc64bd5f7e85a416092fdb88f5300b5a5 schema:name pubmed_id
114 schema:value 26478194
115 rdf:type schema:PropertyValue
116 Ndd16b0ec3ed647cc811f6635ad29f950 rdf:first sg:person.07620753600.59
117 rdf:rest Ndfd34215543243e5857fefb1d81e1620
118 Ndec802725c2143fcb4fe5ecb49bd153d schema:name dimensions_id
119 schema:value pub.1000656816
120 rdf:type schema:PropertyValue
121 Ndfd34215543243e5857fefb1d81e1620 rdf:first sg:person.0700176030.84
122 rdf:rest N3463a3176d3446d3835e51773350dd6e
123 Nefd34f1228494cb382e2aee99471049e schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
126 schema:name Chemical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
129 schema:name Physical Chemistry (incl. Structural)
130 rdf:type schema:DefinedTerm
131 sg:journal.1043282 schema:issn 2041-1723
132 schema:name Nature Communications
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.01152075504.33 schema:affiliation grid-institutes:grid.20861.3d
136 schema:familyName Zewail
137 schema:givenName Ahmed H.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152075504.33
139 rdf:type schema:Person
140 sg:person.01237524155.21 schema:affiliation grid-institutes:grid.20861.3d
141 schema:familyName Tang
142 schema:givenName Jau
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237524155.21
144 rdf:type schema:Person
145 sg:person.0577027303.04 schema:affiliation grid-institutes:grid.20861.3d
146 schema:familyName Yoo
147 schema:givenName Byung-Kuk
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577027303.04
149 rdf:type schema:Person
150 sg:person.0700176030.84 schema:affiliation grid-institutes:grid.20861.3d
151 schema:familyName Liu
152 schema:givenName Haihua
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700176030.84
154 rdf:type schema:Person
155 sg:person.07620753600.59 schema:affiliation grid-institutes:grid.20861.3d
156 schema:familyName Kwon
157 schema:givenName Oh-Hoon
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07620753600.59
159 rdf:type schema:Person
160 sg:pub.10.1007/978-0-387-30160-0_7771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009139332
161 https://doi.org/10.1007/978-0-387-30160-0_7771
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-3-662-04074-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025790540
164 https://doi.org/10.1007/978-3-662-04074-4
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s11164-009-0080-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049472342
167 https://doi.org/10.1007/s11164-009-0080-2
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/238037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011069243
170 https://doi.org/10.1038/238037a0
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/35065045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040198457
173 https://doi.org/10.1038/35065045
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/35104607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025421157
176 https://doi.org/10.1038/35104607
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/353737a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014356537
179 https://doi.org/10.1038/353737a0
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/ncomms3371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019627345
182 https://doi.org/10.1038/ncomms3371
183 rdf:type schema:CreativeWork
184 grid-institutes:grid.20861.3d schema:alternateName Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
185 schema:name Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...