A recursive vesicle-based model protocell with a primitive model cell cycle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Kensuke Kurihara, Yusaku Okura, Muneyuki Matsuo, Taro Toyota, Kentaro Suzuki, Tadashi Sugawara

ABSTRACT

Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution. More... »

PAGES

8352

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms9352

DOI

http://dx.doi.org/10.1038/ncomms9352

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019122132

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26418735


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Cycle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Division", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Proliferation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan", 
            "Research Center for Complex Systems Biology, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurihara", 
        "givenName": "Kensuke", 
        "id": "sg:person.0721220327.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721220327.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okura", 
        "givenName": "Yusaku", 
        "id": "sg:person.0726651251.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726651251.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuo", 
        "givenName": "Muneyuki", 
        "id": "sg:person.0774764451.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774764451.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan", 
            "Research Center for Complex Systems Biology, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toyota", 
        "givenName": "Taro", 
        "id": "sg:person.0665357642.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665357642.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanagawa University", 
          "id": "https://www.grid.ac/institutes/grid.411995.1", 
          "name": [
            "Research Center for Complex Systems Biology, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan", 
            "Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Kentaro", 
        "id": "sg:person.0650402434.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650402434.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyota Physical and Chemical Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.470014.6", 
          "name": [
            "Research Center for Complex Systems Biology, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan", 
            "Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan", 
            "Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugawara", 
        "givenName": "Tadashi", 
        "id": "sg:person.016370774311.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370774311.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/106454603322392479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003161026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02529967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004412693", 
          "https://doi.org/10.1007/bf02529967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02529967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004412693", 
          "https://doi.org/10.1007/bf02529967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.200900141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005437379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.200900141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005437379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cbic.201000614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012874850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.1127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019057951", 
          "https://doi.org/10.1038/nchem.1127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1246/cl.2012.1084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021073815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002329900535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023921884", 
          "https://doi.org/10.1007/s002329900535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2010.01.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027964825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1137541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028787003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0sm01463j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029608892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ast.2013.1110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029897246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.01.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031701472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006568226145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036392470", 
          "https://doi.org/10.1023/a:1006568226145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/372055a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037069109", 
          "https://doi.org/10.1038/372055a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041917403", 
          "https://doi.org/10.1038/nature07742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbpa.2004.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042740176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.1995.0177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043374509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002490050193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044301014", 
          "https://doi.org/10.1007/s002490050193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1106493108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050950522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/354161a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052941729", 
          "https://doi.org/10.1038/354161a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la102689v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056152911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la102689v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056152911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la202648h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056154820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la202648h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056154820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ast.2008.0281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059233074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ast.2009.0456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059233220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.117.3046.528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5301.810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062555722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1246/cl.2012.789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064494906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es00003a702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074236878"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms9352", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6111650", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6109603", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "A recursive vesicle-based model protocell with a primitive model cell cycle", 
    "pagination": "8352", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5b1bdb6004e4ab15ebe57f88192e5cc16af75031e67c20748b0cb05928b2a398"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26418735"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms9352"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019122132"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms9352", 
      "https://app.dimensions.ai/details/publication/pub.1019122132"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms9352"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms9352'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms9352'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms9352'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms9352'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      63 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms9352 schema:about N0eef33a3081f4d83b5a3dbd4bec9c3da
2 N265f0b60d11a4d5e86ad34f3b7a8aaaa
3 N2ef455e9dd8c4523ad64f37109dd22ca
4 N9904fa01674f4778ac016a241edb513f
5 Nddab179b31d54de4ba23d76ace1c848f
6 Nddd15f214ef04ee291d88fc9523db5da
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author N54c8fa8fd27844dc890572e33ca5f77f
10 schema:citation sg:pub.10.1007/bf02529967
11 sg:pub.10.1007/s002329900535
12 sg:pub.10.1007/s002490050193
13 sg:pub.10.1023/a:1006568226145
14 sg:pub.10.1038/354161a0
15 sg:pub.10.1038/372055a0
16 sg:pub.10.1038/nature07742
17 sg:pub.10.1038/nchem.1127
18 https://doi.org/10.1002/bies.200900141
19 https://doi.org/10.1002/cbic.201000614
20 https://doi.org/10.1006/jtbi.1995.0177
21 https://doi.org/10.1016/j.cbpa.2004.10.003
22 https://doi.org/10.1016/j.cell.2013.01.043
23 https://doi.org/10.1016/j.jcis.2010.01.059
24 https://doi.org/10.1021/es00003a702
25 https://doi.org/10.1021/la102689v
26 https://doi.org/10.1021/la202648h
27 https://doi.org/10.1039/c0sm01463j
28 https://doi.org/10.1073/pnas.1106493108
29 https://doi.org/10.1089/ast.2008.0281
30 https://doi.org/10.1089/ast.2009.0456
31 https://doi.org/10.1089/ast.2013.1110
32 https://doi.org/10.1126/science.1137541
33 https://doi.org/10.1126/science.117.3046.528
34 https://doi.org/10.1126/science.275.5301.810
35 https://doi.org/10.1162/106454603322392479
36 https://doi.org/10.1246/cl.2012.1084
37 https://doi.org/10.1246/cl.2012.789
38 schema:datePublished 2015-12
39 schema:datePublishedReg 2015-12-01
40 schema:description Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N3111fa1edea74322bf848cdd2a0e76ed
45 Na7bff20c98e54f28850bbbbaf7ff2391
46 sg:journal.1043282
47 schema:name A recursive vesicle-based model protocell with a primitive model cell cycle
48 schema:pagination 8352
49 schema:productId N3a9bcca77e214483bbef772048201267
50 N6d867bcb5b3c452e90d4f179c319b200
51 N805d2914694240f4ba2e1e1249e85df8
52 Ndbf5a34c4df74cc2b34520e8eafb63b5
53 Ne32538606f1d45f1ab312683bc278fc6
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019122132
55 https://doi.org/10.1038/ncomms9352
56 schema:sdDatePublished 2019-04-10T15:07
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N3bfae42608df46ca95d73d838e1a6c20
59 schema:url https://www.nature.com/articles/ncomms9352
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0eef33a3081f4d83b5a3dbd4bec9c3da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Hydrogen-Ion Concentration
65 rdf:type schema:DefinedTerm
66 N24c05e050cbe47ec9871dde5a0cc8903 rdf:first sg:person.0774764451.44
67 rdf:rest Nd6ee4edf944e435686bed8448093fda7
68 N265f0b60d11a4d5e86ad34f3b7a8aaaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Cell Proliferation
70 rdf:type schema:DefinedTerm
71 N2ef455e9dd8c4523ad64f37109dd22ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Artificial Cells
73 rdf:type schema:DefinedTerm
74 N3111fa1edea74322bf848cdd2a0e76ed schema:volumeNumber 6
75 rdf:type schema:PublicationVolume
76 N3a9bcca77e214483bbef772048201267 schema:name readcube_id
77 schema:value 5b1bdb6004e4ab15ebe57f88192e5cc16af75031e67c20748b0cb05928b2a398
78 rdf:type schema:PropertyValue
79 N3bfae42608df46ca95d73d838e1a6c20 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N5067229c712f40d8a71fcf2a6c4d1717 rdf:first sg:person.016370774311.22
82 rdf:rest rdf:nil
83 N54c8fa8fd27844dc890572e33ca5f77f rdf:first sg:person.0721220327.08
84 rdf:rest Nc30a80487f0a45e182a3249b32ff0d6e
85 N6d867bcb5b3c452e90d4f179c319b200 schema:name doi
86 schema:value 10.1038/ncomms9352
87 rdf:type schema:PropertyValue
88 N721e47199e924073ab775ab4ba644b0b rdf:first sg:person.0650402434.92
89 rdf:rest N5067229c712f40d8a71fcf2a6c4d1717
90 N805d2914694240f4ba2e1e1249e85df8 schema:name nlm_unique_id
91 schema:value 101528555
92 rdf:type schema:PropertyValue
93 N9904fa01674f4778ac016a241edb513f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Cell Cycle
95 rdf:type schema:DefinedTerm
96 Na7bff20c98e54f28850bbbbaf7ff2391 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 Nc30a80487f0a45e182a3249b32ff0d6e rdf:first sg:person.0726651251.31
99 rdf:rest N24c05e050cbe47ec9871dde5a0cc8903
100 Nd6ee4edf944e435686bed8448093fda7 rdf:first sg:person.0665357642.82
101 rdf:rest N721e47199e924073ab775ab4ba644b0b
102 Ndbf5a34c4df74cc2b34520e8eafb63b5 schema:name pubmed_id
103 schema:value 26418735
104 rdf:type schema:PropertyValue
105 Nddab179b31d54de4ba23d76ace1c848f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Cell Division
107 rdf:type schema:DefinedTerm
108 Nddd15f214ef04ee291d88fc9523db5da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Models, Biological
110 rdf:type schema:DefinedTerm
111 Ne32538606f1d45f1ab312683bc278fc6 schema:name dimensions_id
112 schema:value pub.1019122132
113 rdf:type schema:PropertyValue
114 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biological Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
118 schema:name Biochemistry and Cell Biology
119 rdf:type schema:DefinedTerm
120 sg:grant.6109603 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms9352
121 rdf:type schema:MonetaryGrant
122 sg:grant.6111650 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms9352
123 rdf:type schema:MonetaryGrant
124 sg:journal.1043282 schema:issn 2041-1723
125 schema:name Nature Communications
126 rdf:type schema:Periodical
127 sg:person.016370774311.22 schema:affiliation https://www.grid.ac/institutes/grid.470014.6
128 schema:familyName Sugawara
129 schema:givenName Tadashi
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370774311.22
131 rdf:type schema:Person
132 sg:person.0650402434.92 schema:affiliation https://www.grid.ac/institutes/grid.411995.1
133 schema:familyName Suzuki
134 schema:givenName Kentaro
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650402434.92
136 rdf:type schema:Person
137 sg:person.0665357642.82 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
138 schema:familyName Toyota
139 schema:givenName Taro
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665357642.82
141 rdf:type schema:Person
142 sg:person.0721220327.08 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
143 schema:familyName Kurihara
144 schema:givenName Kensuke
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721220327.08
146 rdf:type schema:Person
147 sg:person.0726651251.31 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
148 schema:familyName Okura
149 schema:givenName Yusaku
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726651251.31
151 rdf:type schema:Person
152 sg:person.0774764451.44 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
153 schema:familyName Matsuo
154 schema:givenName Muneyuki
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774764451.44
156 rdf:type schema:Person
157 sg:pub.10.1007/bf02529967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004412693
158 https://doi.org/10.1007/bf02529967
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s002329900535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023921884
161 https://doi.org/10.1007/s002329900535
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s002490050193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044301014
164 https://doi.org/10.1007/s002490050193
165 rdf:type schema:CreativeWork
166 sg:pub.10.1023/a:1006568226145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036392470
167 https://doi.org/10.1023/a:1006568226145
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/354161a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052941729
170 https://doi.org/10.1038/354161a0
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/372055a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037069109
173 https://doi.org/10.1038/372055a0
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nature07742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041917403
176 https://doi.org/10.1038/nature07742
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nchem.1127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019057951
179 https://doi.org/10.1038/nchem.1127
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/bies.200900141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005437379
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/cbic.201000614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012874850
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1006/jtbi.1995.0177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043374509
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.cbpa.2004.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042740176
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.cell.2013.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031701472
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jcis.2010.01.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027964825
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/es00003a702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074236878
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/la102689v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056152911
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/la202648h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056154820
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1039/c0sm01463j schema:sameAs https://app.dimensions.ai/details/publication/pub.1029608892
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1073/pnas.1106493108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050950522
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1089/ast.2008.0281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059233074
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1089/ast.2009.0456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059233220
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1089/ast.2013.1110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029897246
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1126/science.1137541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028787003
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1126/science.117.3046.528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459761
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1126/science.275.5301.810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062555722
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1162/106454603322392479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003161026
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1246/cl.2012.1084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021073815
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1246/cl.2012.789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064494906
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
222 schema:name Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
223 Research Center for Complex Systems Biology, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.411995.1 schema:alternateName Kanagawa University
226 schema:name Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
227 Research Center for Complex Systems Biology, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.470014.6 schema:alternateName Toyota Physical and Chemical Research Institute
230 schema:name Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
231 Research Center for Complex Systems Biology, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
232 Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...