Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09-21

AUTHORS

Y. C. Hu, F. X. Li, M. Z. Li, H. Y. Bai, W. H. Wang

ABSTRACT

With sufficient high cooling rates, a variety of liquids, including metallic melts, will cross a glass transition temperature and solidify into glass accompanying a marked increase of the shear viscosity in approximately 17 orders of magnitude. Because of the intricate atomic structure and dynamic behaviours of liquid, it is yet difficult to capture the underlying structural mechanism responsible for the marked slowing down during glass transition, which impedes deep understanding of the formation and nature of glasses. Here, we report that a universal structural indicator, the average degree of five-fold local symmetry, can well describe the slowdown dynamics during glass transition. A straightforward relationship between structural parameter and viscosity (or α-relaxation time) is introduced to connect the dynamic arrest and the underlying structural evolution. This finding would be helpful in understanding the long-standing challenges of glass transition mechanism in the structural perspective. More... »

PAGES

8310

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms9310

DOI

http://dx.doi.org/10.1038/ncomms9310

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040854939

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26387592


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Y. C.", 
        "id": "sg:person.016575756331.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016575756331.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, 100872, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24539.39", 
          "name": [
            "Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, 100872, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "F. X.", 
        "id": "sg:person.01156040305.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156040305.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, 100872, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24539.39", 
          "name": [
            "Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, 100872, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "M. Z.", 
        "id": "sg:person.01315551732.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315551732.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "H. Y.", 
        "id": "sg:person.0640310271.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "W. H.", 
        "id": "sg:person.01363714371.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023631073", 
          "https://doi.org/10.1038/nphys235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050275833", 
          "https://doi.org/10.1038/nmat3540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042647032", 
          "https://doi.org/10.1038/nmat2219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005355581", 
          "https://doi.org/10.1038/35065704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009776595", 
          "https://doi.org/10.1038/ncomms6014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008328312", 
          "https://doi.org/10.1038/nmat2897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/208674a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016974231", 
          "https://doi.org/10.1038/208674a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009317178", 
          "https://doi.org/10.1038/nmat2340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015538670", 
          "https://doi.org/10.1038/ncomms5616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-012-0360-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052236306", 
          "https://doi.org/10.1007/s11837-012-0360-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2007.0382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014895603", 
          "https://doi.org/10.1557/jmr.2007.0382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047404937", 
          "https://doi.org/10.1038/nmat2293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35048537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012700890", 
          "https://doi.org/10.1038/35048537"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09-21", 
    "datePublishedReg": "2015-09-21", 
    "description": "With sufficient high cooling rates, a variety of liquids, including metallic melts, will cross a glass transition temperature and solidify into glass accompanying a marked increase of the shear viscosity in approximately 17 orders of magnitude. Because of the intricate atomic structure and dynamic behaviours of liquid, it is yet difficult to capture the underlying structural mechanism responsible for the marked slowing down during glass transition, which impedes deep understanding of the formation and nature of glasses. Here, we report that a universal structural indicator, the average degree of five-fold local symmetry, can well describe the slowdown dynamics during glass transition. A straightforward relationship between structural parameter and viscosity (or \u03b1-relaxation time) is introduced to connect the dynamic arrest and the underlying structural evolution. This finding would be helpful in understanding the long-standing challenges of glass transition mechanism in the structural perspective.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms9310", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7194205", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7184678", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "five-fold local symmetry", 
      "dynamic arrest", 
      "glass-forming liquids", 
      "nature of glass", 
      "atomic structure", 
      "metallic glass-forming liquids", 
      "glass transition", 
      "orders of magnitude", 
      "glass transition mechanism", 
      "local symmetry", 
      "five-fold symmetry", 
      "transition mechanism", 
      "variety of liquids", 
      "structural parameters", 
      "glass", 
      "transition temperature", 
      "symmetry", 
      "underlying structural evolution", 
      "structural evolution", 
      "transition", 
      "shear viscosity", 
      "liquid", 
      "glass transition temperature", 
      "metallic melts", 
      "underlying structural mechanism", 
      "dynamics", 
      "temperature", 
      "magnitude", 
      "cooling rate", 
      "high cooling rate", 
      "structure", 
      "deeper understanding", 
      "evolution", 
      "straightforward relationship", 
      "dynamic behavior", 
      "parameters", 
      "formation", 
      "mechanism", 
      "nature", 
      "order", 
      "structural mechanisms", 
      "viscosity", 
      "behavior", 
      "degree", 
      "melt", 
      "increase", 
      "variety", 
      "understanding", 
      "rate", 
      "structural perspective", 
      "structural indicators", 
      "average degree", 
      "challenges", 
      "perspective", 
      "relationship", 
      "indicators", 
      "marked increase", 
      "findings", 
      "arrest"
    ], 
    "name": "Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids", 
    "pagination": "8310", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040854939"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms9310"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26387592"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms9310", 
      "https://app.dimensions.ai/details/publication/pub.1040854939"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_650.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms9310"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms9310'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms9310'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms9310'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms9310'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      97 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms9310 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nc7f414b253844a7aa7fa3991d33238f2
4 schema:citation sg:pub.10.1007/s11837-012-0360-y
5 sg:pub.10.1038/208674a0
6 sg:pub.10.1038/35048537
7 sg:pub.10.1038/35065704
8 sg:pub.10.1038/ncomms5616
9 sg:pub.10.1038/ncomms6014
10 sg:pub.10.1038/nmat2219
11 sg:pub.10.1038/nmat2293
12 sg:pub.10.1038/nmat2340
13 sg:pub.10.1038/nmat2897
14 sg:pub.10.1038/nmat3540
15 sg:pub.10.1038/nphys235
16 sg:pub.10.1557/jmr.2007.0382
17 schema:datePublished 2015-09-21
18 schema:datePublishedReg 2015-09-21
19 schema:description With sufficient high cooling rates, a variety of liquids, including metallic melts, will cross a glass transition temperature and solidify into glass accompanying a marked increase of the shear viscosity in approximately 17 orders of magnitude. Because of the intricate atomic structure and dynamic behaviours of liquid, it is yet difficult to capture the underlying structural mechanism responsible for the marked slowing down during glass transition, which impedes deep understanding of the formation and nature of glasses. Here, we report that a universal structural indicator, the average degree of five-fold local symmetry, can well describe the slowdown dynamics during glass transition. A straightforward relationship between structural parameter and viscosity (or α-relaxation time) is introduced to connect the dynamic arrest and the underlying structural evolution. This finding would be helpful in understanding the long-standing challenges of glass transition mechanism in the structural perspective.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N3dd5d92746df41598386d179b8d67bd1
23 N6ba6b5e728694b0a918a050a40bc1118
24 sg:journal.1043282
25 schema:keywords arrest
26 atomic structure
27 average degree
28 behavior
29 challenges
30 cooling rate
31 deeper understanding
32 degree
33 dynamic arrest
34 dynamic behavior
35 dynamics
36 evolution
37 findings
38 five-fold local symmetry
39 five-fold symmetry
40 formation
41 glass
42 glass transition
43 glass transition mechanism
44 glass transition temperature
45 glass-forming liquids
46 high cooling rate
47 increase
48 indicators
49 liquid
50 local symmetry
51 magnitude
52 marked increase
53 mechanism
54 melt
55 metallic glass-forming liquids
56 metallic melts
57 nature
58 nature of glass
59 order
60 orders of magnitude
61 parameters
62 perspective
63 rate
64 relationship
65 shear viscosity
66 straightforward relationship
67 structural evolution
68 structural indicators
69 structural mechanisms
70 structural parameters
71 structural perspective
72 structure
73 symmetry
74 temperature
75 transition
76 transition mechanism
77 transition temperature
78 underlying structural evolution
79 underlying structural mechanism
80 understanding
81 variety
82 variety of liquids
83 viscosity
84 schema:name Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids
85 schema:pagination 8310
86 schema:productId N882bd3453eae4451b93ee9746ec228da
87 Neb79ea2b406f48eaa1bdcb57d14ba35d
88 Nfcb3124621294babbab5cc7648962ec7
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040854939
90 https://doi.org/10.1038/ncomms9310
91 schema:sdDatePublished 2022-11-24T20:59
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Nc8ea43b5871f4597bdbc0fadc936a06b
94 schema:url https://doi.org/10.1038/ncomms9310
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N16de26cd89c945e9b3f74376bdb5d886 rdf:first sg:person.0640310271.16
99 rdf:rest Neacc3c25b99a44a1833baea489976af6
100 N251bc9d2cd134476bbfdbb680b60bc9c rdf:first sg:person.01315551732.36
101 rdf:rest N16de26cd89c945e9b3f74376bdb5d886
102 N3dd5d92746df41598386d179b8d67bd1 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 N514d27f693e14bed893fb02bf425661c rdf:first sg:person.01156040305.40
105 rdf:rest N251bc9d2cd134476bbfdbb680b60bc9c
106 N6ba6b5e728694b0a918a050a40bc1118 schema:volumeNumber 6
107 rdf:type schema:PublicationVolume
108 N882bd3453eae4451b93ee9746ec228da schema:name dimensions_id
109 schema:value pub.1040854939
110 rdf:type schema:PropertyValue
111 Nc7f414b253844a7aa7fa3991d33238f2 rdf:first sg:person.016575756331.73
112 rdf:rest N514d27f693e14bed893fb02bf425661c
113 Nc8ea43b5871f4597bdbc0fadc936a06b schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Neacc3c25b99a44a1833baea489976af6 rdf:first sg:person.01363714371.28
116 rdf:rest rdf:nil
117 Neb79ea2b406f48eaa1bdcb57d14ba35d schema:name doi
118 schema:value 10.1038/ncomms9310
119 rdf:type schema:PropertyValue
120 Nfcb3124621294babbab5cc7648962ec7 schema:name pubmed_id
121 schema:value 26387592
122 rdf:type schema:PropertyValue
123 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
124 schema:name Physical Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
127 schema:name Other Physical Sciences
128 rdf:type schema:DefinedTerm
129 sg:grant.7184678 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms9310
130 rdf:type schema:MonetaryGrant
131 sg:grant.7194205 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms9310
132 rdf:type schema:MonetaryGrant
133 sg:journal.1043282 schema:issn 2041-1723
134 schema:name Nature Communications
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.01156040305.40 schema:affiliation grid-institutes:grid.24539.39
138 schema:familyName Li
139 schema:givenName F. X.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156040305.40
141 rdf:type schema:Person
142 sg:person.01315551732.36 schema:affiliation grid-institutes:grid.24539.39
143 schema:familyName Li
144 schema:givenName M. Z.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315551732.36
146 rdf:type schema:Person
147 sg:person.01363714371.28 schema:affiliation grid-institutes:grid.458438.6
148 schema:familyName Wang
149 schema:givenName W. H.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28
151 rdf:type schema:Person
152 sg:person.016575756331.73 schema:affiliation grid-institutes:grid.458438.6
153 schema:familyName Hu
154 schema:givenName Y. C.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016575756331.73
156 rdf:type schema:Person
157 sg:person.0640310271.16 schema:affiliation grid-institutes:grid.458438.6
158 schema:familyName Bai
159 schema:givenName H. Y.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16
161 rdf:type schema:Person
162 sg:pub.10.1007/s11837-012-0360-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052236306
163 https://doi.org/10.1007/s11837-012-0360-y
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/208674a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016974231
166 https://doi.org/10.1038/208674a0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/35048537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012700890
169 https://doi.org/10.1038/35048537
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/35065704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005355581
172 https://doi.org/10.1038/35065704
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/ncomms5616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015538670
175 https://doi.org/10.1038/ncomms5616
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ncomms6014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009776595
178 https://doi.org/10.1038/ncomms6014
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nmat2219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042647032
181 https://doi.org/10.1038/nmat2219
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nmat2293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047404937
184 https://doi.org/10.1038/nmat2293
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nmat2340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009317178
187 https://doi.org/10.1038/nmat2340
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nmat2897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008328312
190 https://doi.org/10.1038/nmat2897
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nmat3540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050275833
193 https://doi.org/10.1038/nmat3540
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nphys235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023631073
196 https://doi.org/10.1038/nphys235
197 rdf:type schema:CreativeWork
198 sg:pub.10.1557/jmr.2007.0382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014895603
199 https://doi.org/10.1557/jmr.2007.0382
200 rdf:type schema:CreativeWork
201 grid-institutes:grid.24539.39 schema:alternateName Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, 100872, Beijing, China
202 schema:name Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, 100872, Beijing, China
203 rdf:type schema:Organization
204 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
205 schema:name Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...