Nanoscale size effects in crystallization of metallic glass nanorods View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09-01

AUTHORS

Sungwoo Sohn, Yeonwoong Jung, Yujun Xie, Chinedum Osuji, Jan Schroers, Judy J. Cha

ABSTRACT

Atomistic understanding of crystallization in solids is incomplete due to the lack of appropriate materials and direct experimental tools. Metallic glasses possess simple metallic bonds and slow crystallization kinetics, making them suitable to study crystallization. Here, we investigate crystallization of metallic glass-forming liquids by in-situ heating metallic glass nanorods inside a transmission electron microscope. We unveil that the crystallization kinetics is affected by the nanorod diameter. With decreasing diameters, crystallization temperature decreases initially, exhibiting a minimum at a certain diameter, and then rapidly increases below that. This unusual crystallization kinetics is a consequence of multiple competing factors: increase in apparent viscosity, reduced nucleation probability and enhanced heterogeneous nucleation. The first two are verified by slowed grain growth and scatter in crystallization temperature with decreasing diameters. Our findings provide insight into relevant length scales in crystallization of supercooled metallic glasses, thus offering accurate processing conditions for predictable metallic glass nanomolding. More... »

PAGES

8157

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms9157

DOI

http://dx.doi.org/10.1038/ncomms9157

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020300303

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26323828


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sohn", 
        "givenName": "Sungwoo", 
        "id": "sg:person.01167274630.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167274630.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present address: Nanoscience Technology Center, Orlando, Florida 32826, USA.", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
            "Energy Sciences Institute, Yale West Campus, 06516, West Haven, Connecticut, USA", 
            "Present address: Nanoscience Technology Center, Orlando, Florida 32826, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Yeonwoong", 
        "id": "sg:person.01050413633.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050413633.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Energy Sciences Institute, Yale West Campus, 06516, West Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
            "Energy Sciences Institute, Yale West Campus, 06516, West Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Yujun", 
        "id": "sg:person.015676036243.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015676036243.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical & Environmental Engineering, Yale University, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Chemical & Environmental Engineering, Yale University, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osuji", 
        "givenName": "Chinedum", 
        "id": "sg:person.0746154173.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746154173.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroers", 
        "givenName": "Jan", 
        "id": "sg:person.01145527322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Energy Sciences Institute, Yale West Campus, 06516, West Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA", 
            "Energy Sciences Institute, Yale West Campus, 06516, West Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cha", 
        "givenName": "Judy J.", 
        "id": "sg:person.01214744402.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214744402.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030636840", 
          "https://doi.org/10.1038/nmat1984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027295647", 
          "https://doi.org/10.1038/nmat2542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-009-0128-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010988713", 
          "https://doi.org/10.1007/s11837-009-0128-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011777417", 
          "https://doi.org/10.1038/ncomms1619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015448149", 
          "https://doi.org/10.1038/nmat2508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022408182", 
          "https://doi.org/10.1038/nmat2622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019627345", 
          "https://doi.org/10.1038/ncomms3371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018290838", 
          "https://doi.org/10.1038/nature07718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035817137", 
          "https://doi.org/10.1038/nmeth.2089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009807680", 
          "https://doi.org/10.1038/nmat3275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010259132", 
          "https://doi.org/10.1038/nature13617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/s0883769400053252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067964161", 
          "https://doi.org/10.1557/s0883769400053252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2010.0286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027214760", 
          "https://doi.org/10.1557/jmr.2010.0286"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09-01", 
    "datePublishedReg": "2015-09-01", 
    "description": "Atomistic understanding of crystallization in solids is incomplete due to the lack of appropriate materials and direct experimental tools. Metallic glasses possess simple metallic bonds and slow crystallization kinetics, making them suitable to study crystallization. Here, we investigate crystallization of metallic glass-forming liquids by in-situ heating metallic glass nanorods inside a transmission electron microscope. We unveil that the crystallization kinetics is affected by the nanorod diameter. With decreasing diameters, crystallization temperature decreases initially, exhibiting a minimum at a certain diameter, and then rapidly increases below that. This unusual crystallization kinetics is a consequence of multiple competing factors: increase in apparent viscosity, reduced nucleation probability and enhanced heterogeneous nucleation. The first two are verified by slowed grain growth and scatter in crystallization temperature with decreasing diameters. Our findings provide insight into relevant length scales in crystallization of supercooled metallic glasses, thus offering accurate processing conditions for predictable metallic glass nanomolding.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms9157", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3127424", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "crystallization kinetics", 
      "metallic glass-forming liquids", 
      "nanoscale size effects", 
      "atomistic understanding", 
      "crystallization temperature", 
      "glass-forming liquids", 
      "transmission electron microscope", 
      "metallic bonds", 
      "slow crystallization kinetics", 
      "nanorod diameter", 
      "nanorods", 
      "relevant length scales", 
      "crystallization", 
      "electron microscope", 
      "kinetics", 
      "heterogeneous nucleation", 
      "apparent viscosity", 
      "processing conditions", 
      "length scales", 
      "bonds", 
      "size effect", 
      "appropriate materials", 
      "glass", 
      "liquid", 
      "metallic glasses", 
      "temperature", 
      "nanomolding", 
      "experimental tool", 
      "certain diameter", 
      "solids", 
      "diameter", 
      "viscosity", 
      "nucleation probability", 
      "materials", 
      "microscope", 
      "nucleation", 
      "insights", 
      "conditions", 
      "grain growth", 
      "effect", 
      "minimum", 
      "scatter", 
      "understanding", 
      "growth", 
      "tool", 
      "scale", 
      "consequences", 
      "probability", 
      "factors", 
      "lack", 
      "findings"
    ], 
    "name": "Nanoscale size effects in crystallization of metallic glass nanorods", 
    "pagination": "8157", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020300303"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms9157"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26323828"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms9157", 
      "https://app.dimensions.ai/details/publication/pub.1020300303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_663.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms9157"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms9157'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms9157'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms9157'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms9157'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      89 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms9157 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd231fc6b251f414eb7ee18ea73b98c0a
4 schema:citation sg:pub.10.1007/s11837-009-0128-1
5 sg:pub.10.1038/nature07718
6 sg:pub.10.1038/nature13617
7 sg:pub.10.1038/ncomms1619
8 sg:pub.10.1038/ncomms3371
9 sg:pub.10.1038/nmat1984
10 sg:pub.10.1038/nmat2508
11 sg:pub.10.1038/nmat2542
12 sg:pub.10.1038/nmat2622
13 sg:pub.10.1038/nmat3275
14 sg:pub.10.1038/nmeth.2089
15 sg:pub.10.1557/jmr.2010.0286
16 sg:pub.10.1557/s0883769400053252
17 schema:datePublished 2015-09-01
18 schema:datePublishedReg 2015-09-01
19 schema:description Atomistic understanding of crystallization in solids is incomplete due to the lack of appropriate materials and direct experimental tools. Metallic glasses possess simple metallic bonds and slow crystallization kinetics, making them suitable to study crystallization. Here, we investigate crystallization of metallic glass-forming liquids by in-situ heating metallic glass nanorods inside a transmission electron microscope. We unveil that the crystallization kinetics is affected by the nanorod diameter. With decreasing diameters, crystallization temperature decreases initially, exhibiting a minimum at a certain diameter, and then rapidly increases below that. This unusual crystallization kinetics is a consequence of multiple competing factors: increase in apparent viscosity, reduced nucleation probability and enhanced heterogeneous nucleation. The first two are verified by slowed grain growth and scatter in crystallization temperature with decreasing diameters. Our findings provide insight into relevant length scales in crystallization of supercooled metallic glasses, thus offering accurate processing conditions for predictable metallic glass nanomolding.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf Nda271a072c6d4d3c9cb815c0b2544390
23 Nfaba9ab7732b4bdda5c386a7fc8ff80d
24 sg:journal.1043282
25 schema:keywords apparent viscosity
26 appropriate materials
27 atomistic understanding
28 bonds
29 certain diameter
30 conditions
31 consequences
32 crystallization
33 crystallization kinetics
34 crystallization temperature
35 diameter
36 effect
37 electron microscope
38 experimental tool
39 factors
40 findings
41 glass
42 glass-forming liquids
43 grain growth
44 growth
45 heterogeneous nucleation
46 insights
47 kinetics
48 lack
49 length scales
50 liquid
51 materials
52 metallic bonds
53 metallic glass-forming liquids
54 metallic glasses
55 microscope
56 minimum
57 nanomolding
58 nanorod diameter
59 nanorods
60 nanoscale size effects
61 nucleation
62 nucleation probability
63 probability
64 processing conditions
65 relevant length scales
66 scale
67 scatter
68 size effect
69 slow crystallization kinetics
70 solids
71 temperature
72 tool
73 transmission electron microscope
74 understanding
75 viscosity
76 schema:name Nanoscale size effects in crystallization of metallic glass nanorods
77 schema:pagination 8157
78 schema:productId N2dcb431dbf9e4a18b28687b82710c9b2
79 N8c46c9a1a6ed434487c36d1cc968009f
80 Ne8c11ed693b04432894708c085dcf38e
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020300303
82 https://doi.org/10.1038/ncomms9157
83 schema:sdDatePublished 2022-10-01T06:40
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N82fe5dd510b849b6a333db68d02df987
86 schema:url https://doi.org/10.1038/ncomms9157
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N2dcb431dbf9e4a18b28687b82710c9b2 schema:name dimensions_id
91 schema:value pub.1020300303
92 rdf:type schema:PropertyValue
93 N666a3fd3a24e4a8e836d90f721abb8b3 rdf:first sg:person.01145527322.19
94 rdf:rest Ncc925f4668214bc38cb33d5866344993
95 N82fe5dd510b849b6a333db68d02df987 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N8c46c9a1a6ed434487c36d1cc968009f schema:name doi
98 schema:value 10.1038/ncomms9157
99 rdf:type schema:PropertyValue
100 Ncc925f4668214bc38cb33d5866344993 rdf:first sg:person.01214744402.60
101 rdf:rest rdf:nil
102 Ncdb2d168d73d4b47a42354d72d6a4a4d rdf:first sg:person.01050413633.11
103 rdf:rest Nf2e6b743f5274cb199d3f735e0bb6741
104 Nd231fc6b251f414eb7ee18ea73b98c0a rdf:first sg:person.01167274630.47
105 rdf:rest Ncdb2d168d73d4b47a42354d72d6a4a4d
106 Nda271a072c6d4d3c9cb815c0b2544390 schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 Ne6817bc1e57049358c64516f7c865ca0 rdf:first sg:person.0746154173.27
109 rdf:rest N666a3fd3a24e4a8e836d90f721abb8b3
110 Ne8c11ed693b04432894708c085dcf38e schema:name pubmed_id
111 schema:value 26323828
112 rdf:type schema:PropertyValue
113 Nf2e6b743f5274cb199d3f735e0bb6741 rdf:first sg:person.015676036243.79
114 rdf:rest Ne6817bc1e57049358c64516f7c865ca0
115 Nfaba9ab7732b4bdda5c386a7fc8ff80d schema:volumeNumber 6
116 rdf:type schema:PublicationVolume
117 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
118 schema:name Engineering
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
121 schema:name Materials Engineering
122 rdf:type schema:DefinedTerm
123 sg:grant.3127424 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms9157
124 rdf:type schema:MonetaryGrant
125 sg:journal.1043282 schema:issn 2041-1723
126 schema:name Nature Communications
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.01050413633.11 schema:affiliation grid-institutes:None
130 schema:familyName Jung
131 schema:givenName Yeonwoong
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050413633.11
133 rdf:type schema:Person
134 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.47100.32
135 schema:familyName Schroers
136 schema:givenName Jan
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
138 rdf:type schema:Person
139 sg:person.01167274630.47 schema:affiliation grid-institutes:grid.47100.32
140 schema:familyName Sohn
141 schema:givenName Sungwoo
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167274630.47
143 rdf:type schema:Person
144 sg:person.01214744402.60 schema:affiliation grid-institutes:None
145 schema:familyName Cha
146 schema:givenName Judy J.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214744402.60
148 rdf:type schema:Person
149 sg:person.015676036243.79 schema:affiliation grid-institutes:None
150 schema:familyName Xie
151 schema:givenName Yujun
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015676036243.79
153 rdf:type schema:Person
154 sg:person.0746154173.27 schema:affiliation grid-institutes:grid.47100.32
155 schema:familyName Osuji
156 schema:givenName Chinedum
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746154173.27
158 rdf:type schema:Person
159 sg:pub.10.1007/s11837-009-0128-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010988713
160 https://doi.org/10.1007/s11837-009-0128-1
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature07718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018290838
163 https://doi.org/10.1038/nature07718
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature13617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010259132
166 https://doi.org/10.1038/nature13617
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ncomms1619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011777417
169 https://doi.org/10.1038/ncomms1619
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/ncomms3371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019627345
172 https://doi.org/10.1038/ncomms3371
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nmat1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030636840
175 https://doi.org/10.1038/nmat1984
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nmat2508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015448149
178 https://doi.org/10.1038/nmat2508
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nmat2542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027295647
181 https://doi.org/10.1038/nmat2542
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nmat2622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022408182
184 https://doi.org/10.1038/nmat2622
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nmat3275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009807680
187 https://doi.org/10.1038/nmat3275
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
190 https://doi.org/10.1038/nmeth.2089
191 rdf:type schema:CreativeWork
192 sg:pub.10.1557/jmr.2010.0286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027214760
193 https://doi.org/10.1557/jmr.2010.0286
194 rdf:type schema:CreativeWork
195 sg:pub.10.1557/s0883769400053252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067964161
196 https://doi.org/10.1557/s0883769400053252
197 rdf:type schema:CreativeWork
198 grid-institutes:None schema:alternateName Energy Sciences Institute, Yale West Campus, 06516, West Haven, Connecticut, USA
199 Present address: Nanoscience Technology Center, Orlando, Florida 32826, USA.
200 schema:name Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA
201 Energy Sciences Institute, Yale West Campus, 06516, West Haven, Connecticut, USA
202 Present address: Nanoscience Technology Center, Orlando, Florida 32826, USA.
203 rdf:type schema:Organization
204 grid-institutes:grid.47100.32 schema:alternateName Department of Chemical & Environmental Engineering, Yale University, 06511, New Haven, Connecticut, USA
205 Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA
206 schema:name Department of Chemical & Environmental Engineering, Yale University, 06511, New Haven, Connecticut, USA
207 Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, Connecticut, USA
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...