Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-08-06

AUTHORS

Alexander S. Mikheyev, Mandy M. Y. Tin, Jatin Arora, Thomas D. Seeley

ABSTRACT

Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation. More... »

PAGES

7991

References to SciGraph publications

  • 2010-09-14. Adaptation – not by sweeps alone in NATURE REVIEWS GENETICS
  • 2007-11. Honey bee colonies that have survived Varroa destructor in APIDOLOGIE
  • 1947-10. The spread of a gene in natural conditions in a colony of the moth Panaxia dominula L. in HEREDITY
  • 2015-03-05. A survivor population of wild colonies of European honeybees in the northeastern United States: investigating its genetic structure in APIDOLOGIE
  • 2014-08-24. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera in NATURE GENETICS
  • 2008-10-23. DNA damage in preserved specimens and tissue samples: a molecular assessment in FRONTIERS IN ZOOLOGY
  • 1978-01. Life history strategy of the honey bee, Apis mellifera in OECOLOGIA
  • 2005-10. A haplotype map of the human genome in NATURE
  • 2010-06-20. Common SNPs explain a large proportion of the heritability for human height in NATURE GENETICS
  • 2014-01-30. Finding the missing honey bee genes: lessons learned from a genome upgrade in BMC GENOMICS
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2006-11-29. Honey bees of the Arnot Forest: a population of feral colonies persisting with Varroa destructor in the northeastern United States in APIDOLOGIE
  • 2012-06-12. Observation of Varroa destructor behavior in capped worker brood of Africanized honey bees in EXPERIMENTAL AND APPLIED ACAROLOGY
  • 2014-11-25. ANGSD: Analysis of Next Generation Sequencing Data in BMC BIOINFORMATICS
  • 1994-02. Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L. under natural conditions in EXPERIMENTAL AND APPLIED ACAROLOGY
  • 2011-06-11. Estimation of allele frequency and association mapping using next-generation sequencing data in BMC BIOINFORMATICS
  • 2006-06-29. Survival of mite infested (Varroa destructor) honey bee (Apis mellifera) colonies in a Nordic climate in APIDOLOGIE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms8991

    DOI

    http://dx.doi.org/10.1038/ncomms8991

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029824652

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26246313


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0603", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Evolutionary Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bees", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Body Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Drift", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Insect", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Mitochondrial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Host-Parasite Interactions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Population Density", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Selection, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Varroidae", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Research School of Biology, Australian National University, 0200, Canberra, Australian Capital Territory, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1001.0", 
              "name": [
                "Okinawa Institute of Science and Technology, 1919-1 Tancha, 904-0412, Onna-son, Kunigami-gun, Japan", 
                "Research School of Biology, Australian National University, 0200, Canberra, Australian Capital Territory, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mikheyev", 
            "givenName": "Alexander S.", 
            "id": "sg:person.01033176773.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033176773.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Okinawa Institute of Science and Technology, 1919-1 Tancha, 904-0412, Onna-son, Kunigami-gun, Japan", 
              "id": "http://www.grid.ac/institutes/grid.250464.1", 
              "name": [
                "Okinawa Institute of Science and Technology, 1919-1 Tancha, 904-0412, Onna-son, Kunigami-gun, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tin", 
            "givenName": "Mandy M. Y.", 
            "id": "sg:person.01346551370.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346551370.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Okinawa Institute of Science and Technology, 1919-1 Tancha, 904-0412, Onna-son, Kunigami-gun, Japan", 
                "Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arora", 
            "givenName": "Jatin", 
            "id": "sg:person.0776041611.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776041611.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Seeley", 
            "givenName": "Thomas D.", 
            "id": "sg:person.011444372741.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011444372741.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00055033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011926958", 
              "https://doi.org/10.1007/bf00055033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1051/apido:2006031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008318107", 
              "https://doi.org/10.1051/apido:2006031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1051/apido:2007040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056950541", 
              "https://doi.org/10.1051/apido:2007040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-9994-5-18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018028544", 
              "https://doi.org/10.1186/1742-9994-5-18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1051/apido:2006055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056950489", 
              "https://doi.org/10.1051/apido:2006055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047861938", 
              "https://doi.org/10.1186/1471-2105-12-231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13592-015-0355-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040803392", 
              "https://doi.org/10.1007/s13592-015-0355-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-014-0356-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042585636", 
              "https://doi.org/10.1186/s12859-014-0356-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027442302", 
              "https://doi.org/10.1038/nrg2880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015057090", 
              "https://doi.org/10.1038/ng.608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00344695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045946844", 
              "https://doi.org/10.1007/bf00344695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017293702", 
              "https://doi.org/10.1038/nature04226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10493-012-9579-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025787195", 
              "https://doi.org/10.1007/s10493-012-9579-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1947.11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017442676", 
              "https://doi.org/10.1038/hdy.1947.11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051536247", 
              "https://doi.org/10.1186/1471-2164-15-86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023362722", 
              "https://doi.org/10.1038/ng.3077"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-08-06", 
        "datePublishedReg": "2015-08-06", 
        "description": "Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms8991", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6102298", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6114930", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "genetic diversity", 
          "honey bees", 
          "nuclear genetic diversity", 
          "consequences of polyandry", 
          "honey bee populations", 
          "hundreds of genes", 
          "signs of selection", 
          "wild honey bees", 
          "mechanisms of adaptation", 
          "genetic robustness", 
          "whole-genome sequencing", 
          "mitochondrial bottleneck", 
          "population bottlenecks", 
          "bee populations", 
          "wild populations", 
          "haplotypic diversity", 
          "novel parasites", 
          "genetic variation", 
          "genomic changes", 
          "ectoparasitic mite", 
          "museum samples", 
          "Varroa destructor", 
          "colony mortality", 
          "colony density", 
          "genetic changes", 
          "novel pathogens", 
          "rapid evolution", 
          "diversity", 
          "modern specimens", 
          "bees", 
          "bee colonies", 
          "parasites", 
          "North America", 
          "polyandry", 
          "major loss", 
          "genes", 
          "destructor", 
          "sequencing", 
          "population", 
          "mites", 
          "pathogens", 
          "queens", 
          "colonies", 
          "bottleneck", 
          "tolerance", 
          "adaptation", 
          "evolution", 
          "mechanism", 
          "America", 
          "selection", 
          "rapid tolerance", 
          "hundreds", 
          "changes", 
          "variation", 
          "contrast", 
          "loss", 
          "consequences", 
          "specimens", 
          "disease", 
          "same today", 
          "findings", 
          "preservation", 
          "density", 
          "introduction", 
          "samples", 
          "Museum", 
          "mortality", 
          "past", 
          "today", 
          "study population", 
          "robustness", 
          "signs"
        ], 
        "name": "Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite", 
        "pagination": "7991", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029824652"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms8991"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26246313"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms8991", 
          "https://app.dimensions.ai/details/publication/pub.1029824652"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_653.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms8991"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms8991'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms8991'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms8991'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms8991'


     

    This table displays all metadata directly associated to this object as RDF triples.

    296 TRIPLES      21 PREDICATES      129 URIs      103 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms8991 schema:about N01ed9b863064476f9792a1959e57b65f
    2 N0e668bdc01b446ebb7f08dc67a24e866
    3 N3efc59012d0c4d0ea318b49078c0bfd2
    4 N40d0dc3c5c93473da9cd5639f8395662
    5 N427993d98e1f4694a2300711730ee584
    6 N45597f29b3c94c7b883185880a6e8482
    7 N67253f061fa84f1996ce7f14436f824a
    8 N9e0be1ce531444bb8c125df6fb344300
    9 N9e60d8a7b4244f58ad65fc56f0652364
    10 N9fae54e28dd849989585ca1604785e9d
    11 Na0327b5f56b642f39e2f80ad90d89eb9
    12 Naae796a7528e44689a630a0f68c6c9d1
    13 Ndfc3b352f4e9455bae3f60390bd2d414
    14 Nf6e0b955d10f4ba096f34951789fa016
    15 anzsrc-for:06
    16 anzsrc-for:0603
    17 anzsrc-for:0604
    18 schema:author N5bffd5a9ad494680851e978ecfa0965a
    19 schema:citation sg:pub.10.1007/bf00055033
    20 sg:pub.10.1007/bf00344695
    21 sg:pub.10.1007/s10493-012-9579-0
    22 sg:pub.10.1007/s13592-015-0355-0
    23 sg:pub.10.1038/hdy.1947.11
    24 sg:pub.10.1038/nature04226
    25 sg:pub.10.1038/ng.3077
    26 sg:pub.10.1038/ng.608
    27 sg:pub.10.1038/nmeth.1923
    28 sg:pub.10.1038/nrg2880
    29 sg:pub.10.1051/apido:2006031
    30 sg:pub.10.1051/apido:2006055
    31 sg:pub.10.1051/apido:2007040
    32 sg:pub.10.1186/1471-2105-12-231
    33 sg:pub.10.1186/1471-2164-15-86
    34 sg:pub.10.1186/1742-9994-5-18
    35 sg:pub.10.1186/s12859-014-0356-4
    36 schema:datePublished 2015-08-06
    37 schema:datePublishedReg 2015-08-06
    38 schema:description Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation.
    39 schema:genre article
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N69066534f361429d9e50ea4177d7d619
    42 N8355bec94c444eeb933a5477328dbe63
    43 sg:journal.1043282
    44 schema:keywords America
    45 Museum
    46 North America
    47 Varroa destructor
    48 adaptation
    49 bee colonies
    50 bee populations
    51 bees
    52 bottleneck
    53 changes
    54 colonies
    55 colony density
    56 colony mortality
    57 consequences
    58 consequences of polyandry
    59 contrast
    60 density
    61 destructor
    62 disease
    63 diversity
    64 ectoparasitic mite
    65 evolution
    66 findings
    67 genes
    68 genetic changes
    69 genetic diversity
    70 genetic robustness
    71 genetic variation
    72 genomic changes
    73 haplotypic diversity
    74 honey bee populations
    75 honey bees
    76 hundreds
    77 hundreds of genes
    78 introduction
    79 loss
    80 major loss
    81 mechanism
    82 mechanisms of adaptation
    83 mites
    84 mitochondrial bottleneck
    85 modern specimens
    86 mortality
    87 museum samples
    88 novel parasites
    89 novel pathogens
    90 nuclear genetic diversity
    91 parasites
    92 past
    93 pathogens
    94 polyandry
    95 population
    96 population bottlenecks
    97 preservation
    98 queens
    99 rapid evolution
    100 rapid tolerance
    101 robustness
    102 same today
    103 samples
    104 selection
    105 sequencing
    106 signs
    107 signs of selection
    108 specimens
    109 study population
    110 today
    111 tolerance
    112 variation
    113 whole-genome sequencing
    114 wild honey bees
    115 wild populations
    116 schema:name Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite
    117 schema:pagination 7991
    118 schema:productId N4eee633e27104d84927be8753bc63be1
    119 N9e8bce043fc14d4c80a07e88c16d4130
    120 Nb59a6f4788c84664b6a3fb20fba0f195
    121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029824652
    122 https://doi.org/10.1038/ncomms8991
    123 schema:sdDatePublished 2022-12-01T06:32
    124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    125 schema:sdPublisher N1e0e1ed265a34c87ae497b76d5b5715c
    126 schema:url https://doi.org/10.1038/ncomms8991
    127 sgo:license sg:explorer/license/
    128 sgo:sdDataset articles
    129 rdf:type schema:ScholarlyArticle
    130 N01ed9b863064476f9792a1959e57b65f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Host-Parasite Interactions
    132 rdf:type schema:DefinedTerm
    133 N0e668bdc01b446ebb7f08dc67a24e866 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Animals
    135 rdf:type schema:DefinedTerm
    136 N1e0e1ed265a34c87ae497b76d5b5715c schema:name Springer Nature - SN SciGraph project
    137 rdf:type schema:Organization
    138 N3efc59012d0c4d0ea318b49078c0bfd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Genetic Drift
    140 rdf:type schema:DefinedTerm
    141 N40d0dc3c5c93473da9cd5639f8395662 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Bees
    143 rdf:type schema:DefinedTerm
    144 N427993d98e1f4694a2300711730ee584 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Selection, Genetic
    146 rdf:type schema:DefinedTerm
    147 N45597f29b3c94c7b883185880a6e8482 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Varroidae
    149 rdf:type schema:DefinedTerm
    150 N4eee633e27104d84927be8753bc63be1 schema:name dimensions_id
    151 schema:value pub.1029824652
    152 rdf:type schema:PropertyValue
    153 N5bffd5a9ad494680851e978ecfa0965a rdf:first sg:person.01033176773.10
    154 rdf:rest N62d43eed49114f0ab5014a7a57d9d7d2
    155 N62d43eed49114f0ab5014a7a57d9d7d2 rdf:first sg:person.01346551370.20
    156 rdf:rest Na82fe1b6cb054c7ca633a6188b53eedc
    157 N67253f061fa84f1996ce7f14436f824a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Quantitative Trait Loci
    159 rdf:type schema:DefinedTerm
    160 N69066534f361429d9e50ea4177d7d619 schema:issueNumber 1
    161 rdf:type schema:PublicationIssue
    162 N7d3b38275d154cdeb804d5030949c457 rdf:first sg:person.011444372741.17
    163 rdf:rest rdf:nil
    164 N8355bec94c444eeb933a5477328dbe63 schema:volumeNumber 6
    165 rdf:type schema:PublicationVolume
    166 N9e0be1ce531444bb8c125df6fb344300 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Sequence Analysis, DNA
    168 rdf:type schema:DefinedTerm
    169 N9e60d8a7b4244f58ad65fc56f0652364 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Biological Evolution
    171 rdf:type schema:DefinedTerm
    172 N9e8bce043fc14d4c80a07e88c16d4130 schema:name doi
    173 schema:value 10.1038/ncomms8991
    174 rdf:type schema:PropertyValue
    175 N9fae54e28dd849989585ca1604785e9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Population Density
    177 rdf:type schema:DefinedTerm
    178 Na0327b5f56b642f39e2f80ad90d89eb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Body Size
    180 rdf:type schema:DefinedTerm
    181 Na82fe1b6cb054c7ca633a6188b53eedc rdf:first sg:person.0776041611.46
    182 rdf:rest N7d3b38275d154cdeb804d5030949c457
    183 Naae796a7528e44689a630a0f68c6c9d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Genome, Insect
    185 rdf:type schema:DefinedTerm
    186 Nb59a6f4788c84664b6a3fb20fba0f195 schema:name pubmed_id
    187 schema:value 26246313
    188 rdf:type schema:PropertyValue
    189 Ndfc3b352f4e9455bae3f60390bd2d414 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Genome, Mitochondrial
    191 rdf:type schema:DefinedTerm
    192 Nf6e0b955d10f4ba096f34951789fa016 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Genetic Variation
    194 rdf:type schema:DefinedTerm
    195 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Biological Sciences
    197 rdf:type schema:DefinedTerm
    198 anzsrc-for:0603 schema:inDefinedTermSet anzsrc-for:
    199 schema:name Evolutionary Biology
    200 rdf:type schema:DefinedTerm
    201 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    202 schema:name Genetics
    203 rdf:type schema:DefinedTerm
    204 sg:grant.6102298 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms8991
    205 rdf:type schema:MonetaryGrant
    206 sg:grant.6114930 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms8991
    207 rdf:type schema:MonetaryGrant
    208 sg:journal.1043282 schema:issn 2041-1723
    209 schema:name Nature Communications
    210 schema:publisher Springer Nature
    211 rdf:type schema:Periodical
    212 sg:person.01033176773.10 schema:affiliation grid-institutes:grid.1001.0
    213 schema:familyName Mikheyev
    214 schema:givenName Alexander S.
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033176773.10
    216 rdf:type schema:Person
    217 sg:person.011444372741.17 schema:affiliation grid-institutes:grid.5386.8
    218 schema:familyName Seeley
    219 schema:givenName Thomas D.
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011444372741.17
    221 rdf:type schema:Person
    222 sg:person.01346551370.20 schema:affiliation grid-institutes:grid.250464.1
    223 schema:familyName Tin
    224 schema:givenName Mandy M. Y.
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346551370.20
    226 rdf:type schema:Person
    227 sg:person.0776041611.46 schema:affiliation grid-institutes:grid.22937.3d
    228 schema:familyName Arora
    229 schema:givenName Jatin
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776041611.46
    231 rdf:type schema:Person
    232 sg:pub.10.1007/bf00055033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011926958
    233 https://doi.org/10.1007/bf00055033
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/bf00344695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045946844
    236 https://doi.org/10.1007/bf00344695
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s10493-012-9579-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025787195
    239 https://doi.org/10.1007/s10493-012-9579-0
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s13592-015-0355-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040803392
    242 https://doi.org/10.1007/s13592-015-0355-0
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/hdy.1947.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017442676
    245 https://doi.org/10.1038/hdy.1947.11
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
    248 https://doi.org/10.1038/nature04226
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ng.3077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023362722
    251 https://doi.org/10.1038/ng.3077
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/ng.608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015057090
    254 https://doi.org/10.1038/ng.608
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    257 https://doi.org/10.1038/nmeth.1923
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nrg2880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027442302
    260 https://doi.org/10.1038/nrg2880
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1051/apido:2006031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008318107
    263 https://doi.org/10.1051/apido:2006031
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1051/apido:2006055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056950489
    266 https://doi.org/10.1051/apido:2006055
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1051/apido:2007040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056950541
    269 https://doi.org/10.1051/apido:2007040
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1186/1471-2105-12-231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047861938
    272 https://doi.org/10.1186/1471-2105-12-231
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1186/1471-2164-15-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051536247
    275 https://doi.org/10.1186/1471-2164-15-86
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1186/1742-9994-5-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018028544
    278 https://doi.org/10.1186/1742-9994-5-18
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1186/s12859-014-0356-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042585636
    281 https://doi.org/10.1186/s12859-014-0356-4
    282 rdf:type schema:CreativeWork
    283 grid-institutes:grid.1001.0 schema:alternateName Research School of Biology, Australian National University, 0200, Canberra, Australian Capital Territory, Australia
    284 schema:name Okinawa Institute of Science and Technology, 1919-1 Tancha, 904-0412, Onna-son, Kunigami-gun, Japan
    285 Research School of Biology, Australian National University, 0200, Canberra, Australian Capital Territory, Australia
    286 rdf:type schema:Organization
    287 grid-institutes:grid.22937.3d schema:alternateName Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
    288 schema:name Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
    289 Okinawa Institute of Science and Technology, 1919-1 Tancha, 904-0412, Onna-son, Kunigami-gun, Japan
    290 rdf:type schema:Organization
    291 grid-institutes:grid.250464.1 schema:alternateName Okinawa Institute of Science and Technology, 1919-1 Tancha, 904-0412, Onna-son, Kunigami-gun, Japan
    292 schema:name Okinawa Institute of Science and Technology, 1919-1 Tancha, 904-0412, Onna-son, Kunigami-gun, Japan
    293 rdf:type schema:Organization
    294 grid-institutes:grid.5386.8 schema:alternateName Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, New York, USA
    295 schema:name Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, New York, USA
    296 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...