Giant narrowband twin-beam generation along the pump-energy propagation direction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Angela M. Pérez, Kirill Yu Spasibko, Polina R. Sharapova, Olga V. Tikhonova, Gerd Leuchs, Maria V. Chekhova

ABSTRACT

Walk-off effects, originating from the difference between the group and phase velocities, limit the efficiency of nonlinear optical interactions. While transverse walk-off can be eliminated by proper medium engineering, longitudinal walk-off is harder to avoid. In particular, ultrafast twin-beam generation via pulsed parametric down-conversion and four-wave mixing is only possible in short crystals or fibres. Here we show that in high-gain parametric down-conversion, one can overcome the destructive role of both effects and even turn them into useful tools for shaping the emission. In our experiment, one of the twin beams is emitted along the pump Poynting vector or its group velocity matches that of the pump. The result is markedly enhanced generation of both twin beams, with the simultaneous narrowing of angular and frequency spectrum. The effect will enable efficient generation of ultrafast twin photons and beams in cavities, waveguides and whispering-gallery mode resonators. More... »

PAGES

7707

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms8707

DOI

http://dx.doi.org/10.1038/ncomms8707

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011223938

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26184987


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Max Planck Institute for the Science of Light, G\u00fcnther-Scharowsky-Stra\u00dfe 1/Bau 24, Erlangen 91058, Germany.", 
            "Institute of Optics, Information and Photonics, University of Erlangen-N\u00fcrnberg, Staudtstrasse 7/B2, Erlangen 91058, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez", 
        "givenName": "Angela M.", 
        "id": "sg:person.0774422161.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774422161.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Max Planck Institute for the Science of Light, G\u00fcnther-Scharowsky-Stra\u00dfe 1/Bau 24, Erlangen 91058, Germany.", 
            "Institute of Optics, Information and Photonics, University of Erlangen-N\u00fcrnberg, Staudtstrasse 7/B2, Erlangen 91058, Germany.", 
            "Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spasibko", 
        "givenName": "Kirill Yu", 
        "id": "sg:person.01213353251.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213353251.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharapova", 
        "givenName": "Polina R.", 
        "id": "sg:person.01360300211.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360300211.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tikhonova", 
        "givenName": "Olga V.", 
        "id": "sg:person.012731033017.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012731033017.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Max Planck Institute for the Science of Light, G\u00fcnther-Scharowsky-Stra\u00dfe 1/Bau 24, Erlangen 91058, Germany.", 
            "Institute of Optics, Information and Photonics, University of Erlangen-N\u00fcrnberg, Staudtstrasse 7/B2, Erlangen 91058, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leuchs", 
        "givenName": "Gerd", 
        "id": "sg:person.01336050020.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336050020.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Max Planck Institute for the Science of Light, G\u00fcnther-Scharowsky-Stra\u00dfe 1/Bau 24, Erlangen 91058, Germany.", 
            "Institute of Optics, Information and Photonics, University of Erlangen-N\u00fcrnberg, Staudtstrasse 7/B2, Erlangen 91058, Germany.", 
            "Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chekhova", 
        "givenName": "Maria V.", 
        "id": "sg:person.01152052464.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152052464.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.91.043816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000233265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.043816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000233265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1612-2011/10/12/125201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004674800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35091014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010979357", 
          "https://doi.org/10.1038/35091014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35091014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010979357", 
          "https://doi.org/10.1038/35091014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.053602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015998995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.053602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015998995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.193901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016613193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.193901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016613193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.153603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018704807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.153603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018704807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.133601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018891881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.133601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018891881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.013603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020240171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.013603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020240171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.113901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026348969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.113901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026348969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026821523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026821523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.063901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040690318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.063901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040690318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.183602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043712612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.183602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043712612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.243601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045396005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.243601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045396005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047182640", 
          "https://doi.org/10.1038/nphoton.2010.29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.013833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053171682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.013833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053171682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.64.063815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060497758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.64.063815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060497758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.011801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.011801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.213602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.213602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.163901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.163901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.24.000270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065171874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.023589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065192182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.023589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065192182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.007507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065199697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.20.001562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065216117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.39.002403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065235579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opn.18.3.000026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065246172"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "Walk-off effects, originating from the difference between the group and phase velocities, limit the efficiency of nonlinear optical interactions. While transverse walk-off can be eliminated by proper medium engineering, longitudinal walk-off is harder to avoid. In particular, ultrafast twin-beam generation via pulsed parametric down-conversion and four-wave mixing is only possible in short crystals or fibres. Here we show that in high-gain parametric down-conversion, one can overcome the destructive role of both effects and even turn them into useful tools for shaping the emission. In our experiment, one of the twin beams is emitted along the pump Poynting vector or its group velocity matches that of the pump. The result is markedly enhanced generation of both twin beams, with the simultaneous narrowing of angular and frequency spectrum. The effect will enable efficient generation of ultrafast twin photons and beams in cavities, waveguides and whispering-gallery mode resonators. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms8707", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5333216", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6752755", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3791022", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6752674", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Giant narrowband twin-beam generation along the pump-energy propagation direction", 
    "pagination": "7707", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3579c3caf7497cad325409127cc43f58e415c4ab5cb4dffc1dd7cdf80a84a4c3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26184987"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms8707"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011223938"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms8707", 
      "https://app.dimensions.ai/details/publication/pub.1011223938"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms8707"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms8707'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms8707'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms8707'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms8707'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms8707 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N706a73b565fa4340a13ea2552a57d34f
4 schema:citation sg:pub.10.1038/35091014
5 sg:pub.10.1038/nphoton.2010.29
6 https://doi.org/10.1088/1612-2011/10/12/125201
7 https://doi.org/10.1103/physreva.64.063815
8 https://doi.org/10.1103/physreva.76.013833
9 https://doi.org/10.1103/physreva.82.011801
10 https://doi.org/10.1103/physreva.91.043816
11 https://doi.org/10.1103/physrevlett.100.133601
12 https://doi.org/10.1103/physrevlett.102.183602
13 https://doi.org/10.1103/physrevlett.102.213602
14 https://doi.org/10.1103/physrevlett.106.013603
15 https://doi.org/10.1103/physrevlett.106.053602
16 https://doi.org/10.1103/physrevlett.106.113901
17 https://doi.org/10.1103/physrevlett.109.150502
18 https://doi.org/10.1103/physrevlett.110.153603
19 https://doi.org/10.1103/physrevlett.59.2153
20 https://doi.org/10.1103/physrevlett.93.193901
21 https://doi.org/10.1103/physrevlett.93.243601
22 https://doi.org/10.1103/physrevlett.99.063901
23 https://doi.org/10.1103/physrevlett.99.163901
24 https://doi.org/10.1364/josab.24.000270
25 https://doi.org/10.1364/oe.17.023589
26 https://doi.org/10.1364/oe.20.007507
27 https://doi.org/10.1364/ol.20.001562
28 https://doi.org/10.1364/ol.39.002403
29 https://doi.org/10.1364/opn.18.3.000026
30 schema:datePublished 2015-12
31 schema:datePublishedReg 2015-12-01
32 schema:description Walk-off effects, originating from the difference between the group and phase velocities, limit the efficiency of nonlinear optical interactions. While transverse walk-off can be eliminated by proper medium engineering, longitudinal walk-off is harder to avoid. In particular, ultrafast twin-beam generation via pulsed parametric down-conversion and four-wave mixing is only possible in short crystals or fibres. Here we show that in high-gain parametric down-conversion, one can overcome the destructive role of both effects and even turn them into useful tools for shaping the emission. In our experiment, one of the twin beams is emitted along the pump Poynting vector or its group velocity matches that of the pump. The result is markedly enhanced generation of both twin beams, with the simultaneous narrowing of angular and frequency spectrum. The effect will enable efficient generation of ultrafast twin photons and beams in cavities, waveguides and whispering-gallery mode resonators.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N8c59105d7af94a05ad1877b8f7b2097c
37 Ne2df79d8a8934c90814401f702b6d0a2
38 sg:journal.1043282
39 schema:name Giant narrowband twin-beam generation along the pump-energy propagation direction
40 schema:pagination 7707
41 schema:productId N31baae33e2b64020a1ef142383045d5e
42 N3be6ddae02c347d9a8125a188122bb30
43 N58aae8d0dd5d4dd099d44c0e876ff70c
44 Nd0abcee486ed4d46a41f775a1b70f0ae
45 Ne84e8491ffbd42ca8b9f5ada3a5811f4
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011223938
47 https://doi.org/10.1038/ncomms8707
48 schema:sdDatePublished 2019-04-10T13:01
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nea6c8a51684d48cfb5a395fc3ec7d2d0
51 schema:url https://www.nature.com/articles/ncomms8707
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N31baae33e2b64020a1ef142383045d5e schema:name readcube_id
56 schema:value 3579c3caf7497cad325409127cc43f58e415c4ab5cb4dffc1dd7cdf80a84a4c3
57 rdf:type schema:PropertyValue
58 N3be6ddae02c347d9a8125a188122bb30 schema:name doi
59 schema:value 10.1038/ncomms8707
60 rdf:type schema:PropertyValue
61 N58aae8d0dd5d4dd099d44c0e876ff70c schema:name dimensions_id
62 schema:value pub.1011223938
63 rdf:type schema:PropertyValue
64 N6b074eea60354a2aadd0a938215fa093 rdf:first sg:person.01152052464.48
65 rdf:rest rdf:nil
66 N706a73b565fa4340a13ea2552a57d34f rdf:first sg:person.0774422161.76
67 rdf:rest Na2ff3b0f1ea8498fbc58836f0de45dea
68 N856c0270367145abbf52c608cc08672b rdf:first sg:person.01360300211.68
69 rdf:rest Nb906cea4a42b40519ed1ce2d3e2b3c27
70 N8c59105d7af94a05ad1877b8f7b2097c schema:volumeNumber 6
71 rdf:type schema:PublicationVolume
72 Na2ff3b0f1ea8498fbc58836f0de45dea rdf:first sg:person.01213353251.55
73 rdf:rest N856c0270367145abbf52c608cc08672b
74 Na7bd165e5e8e4394be4b950053492a46 rdf:first sg:person.01336050020.20
75 rdf:rest N6b074eea60354a2aadd0a938215fa093
76 Nb906cea4a42b40519ed1ce2d3e2b3c27 rdf:first sg:person.012731033017.43
77 rdf:rest Na7bd165e5e8e4394be4b950053492a46
78 Nd0abcee486ed4d46a41f775a1b70f0ae schema:name pubmed_id
79 schema:value 26184987
80 rdf:type schema:PropertyValue
81 Ne2df79d8a8934c90814401f702b6d0a2 schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 Ne84e8491ffbd42ca8b9f5ada3a5811f4 schema:name nlm_unique_id
84 schema:value 101528555
85 rdf:type schema:PropertyValue
86 Nea6c8a51684d48cfb5a395fc3ec7d2d0 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
92 schema:name Optical Physics
93 rdf:type schema:DefinedTerm
94 sg:grant.3791022 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms8707
95 rdf:type schema:MonetaryGrant
96 sg:grant.5333216 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms8707
97 rdf:type schema:MonetaryGrant
98 sg:grant.6752674 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms8707
99 rdf:type schema:MonetaryGrant
100 sg:grant.6752755 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms8707
101 rdf:type schema:MonetaryGrant
102 sg:journal.1043282 schema:issn 2041-1723
103 schema:name Nature Communications
104 rdf:type schema:Periodical
105 sg:person.01152052464.48 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
106 schema:familyName Chekhova
107 schema:givenName Maria V.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152052464.48
109 rdf:type schema:Person
110 sg:person.01213353251.55 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
111 schema:familyName Spasibko
112 schema:givenName Kirill Yu
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213353251.55
114 rdf:type schema:Person
115 sg:person.012731033017.43 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
116 schema:familyName Tikhonova
117 schema:givenName Olga V.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012731033017.43
119 rdf:type schema:Person
120 sg:person.01336050020.20 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
121 schema:familyName Leuchs
122 schema:givenName Gerd
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336050020.20
124 rdf:type schema:Person
125 sg:person.01360300211.68 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
126 schema:familyName Sharapova
127 schema:givenName Polina R.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360300211.68
129 rdf:type schema:Person
130 sg:person.0774422161.76 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
131 schema:familyName Pérez
132 schema:givenName Angela M.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774422161.76
134 rdf:type schema:Person
135 sg:pub.10.1038/35091014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010979357
136 https://doi.org/10.1038/35091014
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nphoton.2010.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047182640
139 https://doi.org/10.1038/nphoton.2010.29
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/1612-2011/10/12/125201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004674800
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physreva.64.063815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060497758
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreva.76.013833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053171682
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreva.82.011801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060507665
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreva.91.043816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000233265
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.100.133601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018891881
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.102.183602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043712612
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.102.213602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755440
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.106.013603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020240171
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.106.053602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015998995
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.106.113901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026348969
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.109.150502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026821523
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.110.153603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018704807
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.59.2153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795848
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.93.193901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016613193
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.93.243601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045396005
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.99.063901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040690318
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.99.163901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834744
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1364/josab.24.000270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065171874
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1364/oe.17.023589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065192182
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1364/oe.20.007507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065199697
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1364/ol.20.001562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065216117
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1364/ol.39.002403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065235579
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1364/opn.18.3.000026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065246172
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
190 schema:name Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia.
191 Institute of Optics, Information and Photonics, University of Erlangen-Nürnberg, Staudtstrasse 7/B2, Erlangen 91058, Germany.
192 Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1/Bau 24, Erlangen 91058, Germany.
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.5330.5 schema:alternateName University of Erlangen-Nuremberg
195 schema:name Institute of Optics, Information and Photonics, University of Erlangen-Nürnberg, Staudtstrasse 7/B2, Erlangen 91058, Germany.
196 Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1/Bau 24, Erlangen 91058, Germany.
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...