Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

J. Wenz, S. Schleede, K. Khrennikov, M. Bech, P. Thibault, M. Heigoldt, F. Pfeiffer, S. Karsch

ABSTRACT

X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. More... »

PAGES

7568

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms8568

DOI

http://dx.doi.org/10.1038/ncomms8568

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048337928

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26189811


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Fakult\u00e4t f\u00fcr Physik, Am Coulombwall 1, Garching 85748, Germany", 
            "MPI f\u00fcr Quantenoptik, Abteilung f\u00fcr Attosekundenphysik, Hans-Kopfermann-Str. 1, Garching 85748, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wenz", 
        "givenName": "J.", 
        "id": "sg:person.0711153432.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711153432.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Lehrstuhl f\u00fcr Biomedizinische Physik, Physik-Department & Institut f\u00fcr Medizintechnik, Technische Universit\u00e4t M\u00fcnchen, Garching 85748, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schleede", 
        "givenName": "S.", 
        "id": "sg:person.01362742147.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362742147.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Fakult\u00e4t f\u00fcr Physik, Am Coulombwall 1, Garching 85748, Germany", 
            "MPI f\u00fcr Quantenoptik, Abteilung f\u00fcr Attosekundenphysik, Hans-Kopfermann-Str. 1, Garching 85748, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khrennikov", 
        "givenName": "K.", 
        "id": "sg:person.016152143603.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152143603.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Lehrstuhl f\u00fcr Biomedizinische Physik, Physik-Department & Institut f\u00fcr Medizintechnik, Technische Universit\u00e4t M\u00fcnchen, Garching 85748, Germany", 
            "Department of Medical Radiation Physics, Clinical Sciences, Lund University, Barngatan 2:B, Lund 22185, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bech", 
        "givenName": "M.", 
        "id": "sg:person.01030474667.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030474667.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Lehrstuhl f\u00fcr Biomedizinische Physik, Physik-Department & Institut f\u00fcr Medizintechnik, Technische Universit\u00e4t M\u00fcnchen, Garching 85748, Germany", 
            "Department of Physics and Astronomy, University College London, Gower street, London WC1E 6BT, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thibault", 
        "givenName": "P.", 
        "id": "sg:person.0730033373.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730033373.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Fakult\u00e4t f\u00fcr Physik, Am Coulombwall 1, Garching 85748, Germany", 
            "MPI f\u00fcr Quantenoptik, Abteilung f\u00fcr Attosekundenphysik, Hans-Kopfermann-Str. 1, Garching 85748, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heigoldt", 
        "givenName": "M.", 
        "id": "sg:person.01372305432.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372305432.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Lehrstuhl f\u00fcr Biomedizinische Physik, Physik-Department & Institut f\u00fcr Medizintechnik, Technische Universit\u00e4t M\u00fcnchen, Garching 85748, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfeiffer", 
        "givenName": "F.", 
        "id": "sg:person.0724075714.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724075714.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Fakult\u00e4t f\u00fcr Physik, Am Coulombwall 1, Garching 85748, Germany", 
            "MPI f\u00fcr Quantenoptik, Abteilung f\u00fcr Attosekundenphysik, Hans-Kopfermann-Str. 1, Garching 85748, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karsch", 
        "givenName": "S.", 
        "id": "sg:person.01313161007.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313161007.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nm0496-473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001062136", 
          "https://doi.org/10.1038/nm0496-473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/384335a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007628077", 
          "https://doi.org/10.1038/384335a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2008.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010059121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2011.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011582155", 
          "https://doi.org/10.1038/nphoton.2011.327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012409681", 
          "https://doi.org/10.1038/nphys1942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020161841", 
          "https://doi.org/10.1038/nphys2090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/28/11/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020215890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/425/19/192007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022197427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/373595a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022256133", 
          "https://doi.org/10.1038/373595a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2818.2002.01010.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023934924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031641869", 
          "https://doi.org/10.1038/nphys1872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032295679", 
          "https://doi.org/10.1038/nphys2071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1325200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032501355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2013.0032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032922347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cphc.200800667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033950712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039617900", 
          "https://doi.org/10.1038/nphys265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039617900", 
          "https://doi.org/10.1038/nphys265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039617900", 
          "https://doi.org/10.1038/nphys265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340802130795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040578525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(02)02893-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043289511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.293366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052418974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.293366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052418974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052746552", 
          "https://doi.org/10.1038/nphys1789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1754212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057814657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1928312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057832565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3310275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057934940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.364374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057990697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/52/23/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.045804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060503850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.045804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060503850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.085002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.085002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.215001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.215001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.025506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.025506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1104739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.11.002289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065182534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.010359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065196835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.36.002426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065230411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.37.003624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065232568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/optica.1.000045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065247761"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms8568", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3790106", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3780849", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source", 
    "pagination": "7568", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e6464b82d0bda3371b664c03c06dda8060e6e0c4098d1d086ae6795177b8a6e3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26189811"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms8568"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048337928"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms8568", 
      "https://app.dimensions.ai/details/publication/pub.1048337928"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms8568"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms8568'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms8568'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms8568'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms8568'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms8568 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nd3a112b2203c4166980e1e68deba509b
4 schema:citation sg:pub.10.1038/373595a0
5 sg:pub.10.1038/384335a0
6 sg:pub.10.1038/nm0496-473
7 sg:pub.10.1038/nphoton.2011.327
8 sg:pub.10.1038/nphys1789
9 sg:pub.10.1038/nphys1872
10 sg:pub.10.1038/nphys1942
11 sg:pub.10.1038/nphys2071
12 sg:pub.10.1038/nphys2090
13 sg:pub.10.1038/nphys265
14 https://doi.org/10.1002/cphc.200800667
15 https://doi.org/10.1016/j.ejmp.2008.05.006
16 https://doi.org/10.1016/s0360-3016(02)02893-6
17 https://doi.org/10.1046/j.1365-2818.2002.01010.x
18 https://doi.org/10.1063/1.1325200
19 https://doi.org/10.1063/1.1754212
20 https://doi.org/10.1063/1.1928312
21 https://doi.org/10.1063/1.3310275
22 https://doi.org/10.1063/1.364374
23 https://doi.org/10.1080/09500340802130795
24 https://doi.org/10.1088/0022-3727/28/11/012
25 https://doi.org/10.1088/0031-9155/52/23/010
26 https://doi.org/10.1088/1742-6596/425/19/192007
27 https://doi.org/10.1098/rsta.2013.0032
28 https://doi.org/10.1103/physreva.76.045804
29 https://doi.org/10.1103/physrevlett.101.085002
30 https://doi.org/10.1103/physrevlett.105.215001
31 https://doi.org/10.1103/physrevlett.93.135005
32 https://doi.org/10.1103/physrevlett.97.025506
33 https://doi.org/10.1103/revmodphys.81.1229
34 https://doi.org/10.1103/revmodphys.85.1
35 https://doi.org/10.1117/12.293366
36 https://doi.org/10.1126/science.1104739
37 https://doi.org/10.1364/oe.11.002289
38 https://doi.org/10.1364/oe.19.010359
39 https://doi.org/10.1364/ol.36.002426
40 https://doi.org/10.1364/ol.37.003624
41 https://doi.org/10.1364/optica.1.000045
42 schema:datePublished 2015-12
43 schema:datePublishedReg 2015-12-01
44 schema:description X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N4b50790513d34378a69d06ec13ead990
49 Nf29e88020f1d42bda0602a4a0177d260
50 sg:journal.1043282
51 schema:name Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source
52 schema:pagination 7568
53 schema:productId N3484a7065f1745d99d140930ec2e049c
54 N7f3c230b19fa4cf090b3b358cb8ee053
55 Nab09e28e863d4d1890db0b3ac664fe77
56 Nc189334b56054ccca2072ee7542a95cd
57 Nf9cc4bfcd99b40e88141b7db06a4467a
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048337928
59 https://doi.org/10.1038/ncomms8568
60 schema:sdDatePublished 2019-04-10T17:20
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N8c4b4b037b724f3587c08ba326c88b57
63 schema:url https://www.nature.com/articles/ncomms8568
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N3484a7065f1745d99d140930ec2e049c schema:name doi
68 schema:value 10.1038/ncomms8568
69 rdf:type schema:PropertyValue
70 N4b50790513d34378a69d06ec13ead990 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N528d9d9197584be2810c3825a4eff600 rdf:first sg:person.01313161007.34
73 rdf:rest rdf:nil
74 N5889eebc1cce4614885f891a2691c1a1 rdf:first sg:person.0724075714.98
75 rdf:rest N528d9d9197584be2810c3825a4eff600
76 N6bbeae4c3a564432877f336aab58758c rdf:first sg:person.01362742147.74
77 rdf:rest N810dcaac418f426d8285893754bf3fa7
78 N755cddef3e4e43c492b02eee0dddf079 rdf:first sg:person.01372305432.12
79 rdf:rest N5889eebc1cce4614885f891a2691c1a1
80 N766f7ff3af5041c6aa13636a31c070a9 rdf:first sg:person.0730033373.00
81 rdf:rest N755cddef3e4e43c492b02eee0dddf079
82 N7f3c230b19fa4cf090b3b358cb8ee053 schema:name nlm_unique_id
83 schema:value 101528555
84 rdf:type schema:PropertyValue
85 N810dcaac418f426d8285893754bf3fa7 rdf:first sg:person.016152143603.76
86 rdf:rest Nb184fed001b649f8976db91e7cb8dfdf
87 N8c4b4b037b724f3587c08ba326c88b57 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nab09e28e863d4d1890db0b3ac664fe77 schema:name pubmed_id
90 schema:value 26189811
91 rdf:type schema:PropertyValue
92 Nb184fed001b649f8976db91e7cb8dfdf rdf:first sg:person.01030474667.07
93 rdf:rest N766f7ff3af5041c6aa13636a31c070a9
94 Nc189334b56054ccca2072ee7542a95cd schema:name readcube_id
95 schema:value e6464b82d0bda3371b664c03c06dda8060e6e0c4098d1d086ae6795177b8a6e3
96 rdf:type schema:PropertyValue
97 Nd3a112b2203c4166980e1e68deba509b rdf:first sg:person.0711153432.12
98 rdf:rest N6bbeae4c3a564432877f336aab58758c
99 Nf29e88020f1d42bda0602a4a0177d260 schema:volumeNumber 6
100 rdf:type schema:PublicationVolume
101 Nf9cc4bfcd99b40e88141b7db06a4467a schema:name dimensions_id
102 schema:value pub.1048337928
103 rdf:type schema:PropertyValue
104 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
105 schema:name Physical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
108 schema:name Other Physical Sciences
109 rdf:type schema:DefinedTerm
110 sg:grant.3780849 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms8568
111 rdf:type schema:MonetaryGrant
112 sg:grant.3790106 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms8568
113 rdf:type schema:MonetaryGrant
114 sg:journal.1043282 schema:issn 2041-1723
115 schema:name Nature Communications
116 rdf:type schema:Periodical
117 sg:person.01030474667.07 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
118 schema:familyName Bech
119 schema:givenName M.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030474667.07
121 rdf:type schema:Person
122 sg:person.01313161007.34 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
123 schema:familyName Karsch
124 schema:givenName S.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313161007.34
126 rdf:type schema:Person
127 sg:person.01362742147.74 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
128 schema:familyName Schleede
129 schema:givenName S.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362742147.74
131 rdf:type schema:Person
132 sg:person.01372305432.12 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
133 schema:familyName Heigoldt
134 schema:givenName M.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372305432.12
136 rdf:type schema:Person
137 sg:person.016152143603.76 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
138 schema:familyName Khrennikov
139 schema:givenName K.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152143603.76
141 rdf:type schema:Person
142 sg:person.0711153432.12 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
143 schema:familyName Wenz
144 schema:givenName J.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711153432.12
146 rdf:type schema:Person
147 sg:person.0724075714.98 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
148 schema:familyName Pfeiffer
149 schema:givenName F.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724075714.98
151 rdf:type schema:Person
152 sg:person.0730033373.00 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
153 schema:familyName Thibault
154 schema:givenName P.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730033373.00
156 rdf:type schema:Person
157 sg:pub.10.1038/373595a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022256133
158 https://doi.org/10.1038/373595a0
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/384335a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007628077
161 https://doi.org/10.1038/384335a0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nm0496-473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001062136
164 https://doi.org/10.1038/nm0496-473
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nphoton.2011.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011582155
167 https://doi.org/10.1038/nphoton.2011.327
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nphys1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052746552
170 https://doi.org/10.1038/nphys1789
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphys1872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031641869
173 https://doi.org/10.1038/nphys1872
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nphys1942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012409681
176 https://doi.org/10.1038/nphys1942
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nphys2071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032295679
179 https://doi.org/10.1038/nphys2071
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nphys2090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020161841
182 https://doi.org/10.1038/nphys2090
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nphys265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039617900
185 https://doi.org/10.1038/nphys265
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1002/cphc.200800667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033950712
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.ejmp.2008.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010059121
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0360-3016(02)02893-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043289511
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1046/j.1365-2818.2002.01010.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023934924
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1063/1.1325200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032501355
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.1754212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057814657
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1063/1.1928312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057832565
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1063/1.3310275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057934940
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1063/1.364374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057990697
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1080/09500340802130795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040578525
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1088/0022-3727/28/11/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020215890
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1088/0031-9155/52/23/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026879
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1088/1742-6596/425/19/192007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022197427
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1098/rsta.2013.0032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032922347
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physreva.76.045804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060503850
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.101.085002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753934
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.105.215001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757673
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.93.135005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829047
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.97.025506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832554
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/revmodphys.81.1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839670
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/revmodphys.85.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015710152
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1117/12.293366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052418974
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.1104739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451162
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1364/oe.11.002289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065182534
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1364/oe.19.010359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065196835
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1364/ol.36.002426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065230411
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1364/ol.37.003624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065232568
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1364/optica.1.000045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065247761
242 rdf:type schema:CreativeWork
243 https://www.grid.ac/institutes/grid.450272.6 schema:alternateName Max Planck Institute of Quantum Optics
244 schema:name Ludwig-Maximilians-Universität München, Fakultät für Physik, Am Coulombwall 1, Garching 85748, Germany
245 MPI für Quantenoptik, Abteilung für Attosekundenphysik, Hans-Kopfermann-Str. 1, Garching 85748, Germany
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.4514.4 schema:alternateName Lund University
248 schema:name Department of Medical Radiation Physics, Clinical Sciences, Lund University, Barngatan 2:B, Lund 22185, Sweden
249 Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching 85748, Germany
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
252 schema:name Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching 85748, Germany
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
255 schema:name Department of Physics and Astronomy, University College London, Gower street, London WC1E 6BT, UK
256 Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching 85748, Germany
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...