Large Seebeck effect by charge-mobility engineering View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-06-25

AUTHORS

Peijie Sun, Beipei Wei, Jiahao Zhang, Jan M. Tomczak, A.M. Strydom, M. Søndergaard, Bo B. Iversen, Frank Steglich

ABSTRACT

The Seebeck effect describes the generation of an electric potential in a conducting solid exposed to a temperature gradient. In most cases, it is dominated by an energy-dependent electronic density of states at the Fermi level, in line with the prevalent efforts towards superior thermoelectrics through the engineering of electronic structure. Here we demonstrate an alternative source for the Seebeck effect based on charge-carrier relaxation: a charge mobility that changes rapidly with temperature can result in a sizeable addition to the Seebeck coefficient. This new Seebeck source is demonstrated explicitly for Ni-doped CoSb3, where a marked mobility change occurs due to the crossover between two different charge-relaxation regimes. Our findings unveil the origin of pronounced features in the Seebeck coefficient of many other elusive materials characterized by a significant mobility mismatch. When utilized appropriately, this effect can also provide a novel route to the design of improved thermoelectric materials. More... »

PAGES

7475

References to SciGraph publications

  • 2008-02. Complex thermoelectric materials in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms8475

    DOI

    http://dx.doi.org/10.1038/ncomms8475

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028794995

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26108283


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.458438.6", 
              "name": [
                "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Peijie", 
            "id": "sg:person.0616273273.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616273273.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.458438.6", 
              "name": [
                "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wei", 
            "givenName": "Beipei", 
            "id": "sg:person.01061422176.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061422176.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.458438.6", 
              "name": [
                "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jiahao", 
            "id": "sg:person.01127535376.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127535376.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Solid State Physics, Vienna University of Technology, A-1040, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute of Solid State Physics, Vienna University of Technology, A-1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tomczak", 
            "givenName": "Jan M.", 
            "id": "sg:person.0654456660.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654456660.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419507.e", 
              "name": [
                "Department of Physics, Highly Correlated Matter Research Group, University of Johannesburg, 2006, Auckland Park, South Africa", 
                "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strydom", 
            "givenName": "A.M.", 
            "id": "sg:person.012471222677.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012471222677.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, University of Aarhus, DK-8000, Aarhus C, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.7048.b", 
              "name": [
                "Department of Chemistry, University of Aarhus, DK-8000, Aarhus C, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "S\u00f8ndergaard", 
            "givenName": "M.", 
            "id": "sg:person.016624535224.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624535224.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, University of Aarhus, DK-8000, Aarhus C, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.7048.b", 
              "name": [
                "Department of Chemistry, University of Aarhus, DK-8000, Aarhus C, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iversen", 
            "givenName": "Bo B.", 
            "id": "sg:person.0623137215.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623137215.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419507.e", 
              "name": [
                "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
                "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steglich", 
            "givenName": "Frank", 
            "id": "sg:person.01061214726.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmat2090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014989328", 
              "https://doi.org/10.1038/nmat2090"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-06-25", 
        "datePublishedReg": "2015-06-25", 
        "description": "The Seebeck effect describes the generation of an electric potential in a conducting solid exposed to a temperature gradient. In most cases, it is dominated by an energy-dependent electronic density of states at the Fermi level, in line with the prevalent efforts towards superior thermoelectrics through the engineering of electronic structure. Here we demonstrate an alternative source for the Seebeck effect based on charge-carrier relaxation: a charge mobility that changes rapidly with temperature can result in a sizeable addition to the Seebeck coefficient. This new Seebeck source is demonstrated explicitly for Ni-doped CoSb3, where a marked mobility change occurs due to the crossover between two different charge-relaxation regimes. Our findings unveil the origin of pronounced features in the Seebeck coefficient of many other elusive materials characterized by a significant mobility mismatch. When utilized appropriately, this effect can also provide a novel route to the design of improved thermoelectric materials.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms8475", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8121069", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "Seebeck effect", 
          "Seebeck coefficient", 
          "improved thermoelectric materials", 
          "Superior Thermoelectric", 
          "thermoelectric materials", 
          "large Seebeck effect", 
          "temperature gradient", 
          "electric potential", 
          "charge carrier relaxation", 
          "charge mobility", 
          "mobility mismatch", 
          "electronic structure", 
          "novel route", 
          "energy-dependent electronic density", 
          "electronic density", 
          "elusive materials", 
          "engineering", 
          "materials", 
          "Fermi level", 
          "thermoelectrics", 
          "prevalent efforts", 
          "CoSb3", 
          "coefficient", 
          "alternative source", 
          "mobility changes", 
          "temperature", 
          "sizeable addition", 
          "Ni", 
          "design", 
          "pronounced features", 
          "density", 
          "route", 
          "mismatch", 
          "source", 
          "gradient", 
          "effect", 
          "structure", 
          "generation", 
          "regime", 
          "mobility", 
          "relaxation", 
          "potential", 
          "addition", 
          "most cases", 
          "crossover", 
          "features", 
          "state", 
          "lines", 
          "cases", 
          "changes", 
          "efforts", 
          "origin", 
          "levels", 
          "findings"
        ], 
        "name": "Large Seebeck effect by charge-mobility engineering", 
        "pagination": "7475", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028794995"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms8475"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26108283"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms8475", 
          "https://app.dimensions.ai/details/publication/pub.1028794995"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_670.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms8475"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms8475'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms8475'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms8475'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms8475'


     

    This table displays all metadata directly associated to this object as RDF triples.

    180 TRIPLES      21 PREDICATES      80 URIs      71 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms8475 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N47c755853d7a4f90a51167bec8a72fb8
    4 schema:citation sg:pub.10.1038/nmat2090
    5 schema:datePublished 2015-06-25
    6 schema:datePublishedReg 2015-06-25
    7 schema:description The Seebeck effect describes the generation of an electric potential in a conducting solid exposed to a temperature gradient. In most cases, it is dominated by an energy-dependent electronic density of states at the Fermi level, in line with the prevalent efforts towards superior thermoelectrics through the engineering of electronic structure. Here we demonstrate an alternative source for the Seebeck effect based on charge-carrier relaxation: a charge mobility that changes rapidly with temperature can result in a sizeable addition to the Seebeck coefficient. This new Seebeck source is demonstrated explicitly for Ni-doped CoSb3, where a marked mobility change occurs due to the crossover between two different charge-relaxation regimes. Our findings unveil the origin of pronounced features in the Seebeck coefficient of many other elusive materials characterized by a significant mobility mismatch. When utilized appropriately, this effect can also provide a novel route to the design of improved thermoelectric materials.
    8 schema:genre article
    9 schema:isAccessibleForFree true
    10 schema:isPartOf N27e9ec88b99b487ba5165dd2308ae489
    11 N6d08cf70a057421f9e7ad0915b3c98be
    12 sg:journal.1043282
    13 schema:keywords CoSb3
    14 Fermi level
    15 Ni
    16 Seebeck coefficient
    17 Seebeck effect
    18 Superior Thermoelectric
    19 addition
    20 alternative source
    21 cases
    22 changes
    23 charge carrier relaxation
    24 charge mobility
    25 coefficient
    26 crossover
    27 density
    28 design
    29 effect
    30 efforts
    31 electric potential
    32 electronic density
    33 electronic structure
    34 elusive materials
    35 energy-dependent electronic density
    36 engineering
    37 features
    38 findings
    39 generation
    40 gradient
    41 improved thermoelectric materials
    42 large Seebeck effect
    43 levels
    44 lines
    45 materials
    46 mismatch
    47 mobility
    48 mobility changes
    49 mobility mismatch
    50 most cases
    51 novel route
    52 origin
    53 potential
    54 prevalent efforts
    55 pronounced features
    56 regime
    57 relaxation
    58 route
    59 sizeable addition
    60 source
    61 state
    62 structure
    63 temperature
    64 temperature gradient
    65 thermoelectric materials
    66 thermoelectrics
    67 schema:name Large Seebeck effect by charge-mobility engineering
    68 schema:pagination 7475
    69 schema:productId N3b20c3f3027b461587e5da5bcdc79627
    70 N86b5810e96834168998f1c9ec71f305c
    71 N9741d2fda10441f1ad45123b32942710
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028794995
    73 https://doi.org/10.1038/ncomms8475
    74 schema:sdDatePublished 2022-10-01T06:41
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher Nc5acc4202ad4466890160ff7b08f0f35
    77 schema:url https://doi.org/10.1038/ncomms8475
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N27e9ec88b99b487ba5165dd2308ae489 schema:issueNumber 1
    82 rdf:type schema:PublicationIssue
    83 N2f5d3f58bce947018234609097dac8f3 rdf:first sg:person.01061214726.76
    84 rdf:rest rdf:nil
    85 N30bc484016c04e809a434af522540864 rdf:first sg:person.0654456660.16
    86 rdf:rest N9d26c6f8582e4440b40f65614c157cfa
    87 N3b20c3f3027b461587e5da5bcdc79627 schema:name pubmed_id
    88 schema:value 26108283
    89 rdf:type schema:PropertyValue
    90 N47c755853d7a4f90a51167bec8a72fb8 rdf:first sg:person.0616273273.89
    91 rdf:rest Nc33542b6f0d44574b89ebaebb87c0c08
    92 N6d08cf70a057421f9e7ad0915b3c98be schema:volumeNumber 6
    93 rdf:type schema:PublicationVolume
    94 N83e323781b5f463a949223ef8e64793b rdf:first sg:person.01127535376.71
    95 rdf:rest N30bc484016c04e809a434af522540864
    96 N86b5810e96834168998f1c9ec71f305c schema:name dimensions_id
    97 schema:value pub.1028794995
    98 rdf:type schema:PropertyValue
    99 N8b3251e73a5048c9afb94ea7473137c4 rdf:first sg:person.016624535224.83
    100 rdf:rest Ncda6fc802ee8479a8b8b3ee27c8fd8fe
    101 N9741d2fda10441f1ad45123b32942710 schema:name doi
    102 schema:value 10.1038/ncomms8475
    103 rdf:type schema:PropertyValue
    104 N9d26c6f8582e4440b40f65614c157cfa rdf:first sg:person.012471222677.87
    105 rdf:rest N8b3251e73a5048c9afb94ea7473137c4
    106 Nc33542b6f0d44574b89ebaebb87c0c08 rdf:first sg:person.01061422176.06
    107 rdf:rest N83e323781b5f463a949223ef8e64793b
    108 Nc5acc4202ad4466890160ff7b08f0f35 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 Ncda6fc802ee8479a8b8b3ee27c8fd8fe rdf:first sg:person.0623137215.47
    111 rdf:rest N2f5d3f58bce947018234609097dac8f3
    112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Engineering
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Materials Engineering
    117 rdf:type schema:DefinedTerm
    118 sg:grant.8121069 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms8475
    119 rdf:type schema:MonetaryGrant
    120 sg:journal.1043282 schema:issn 2041-1723
    121 schema:name Nature Communications
    122 schema:publisher Springer Nature
    123 rdf:type schema:Periodical
    124 sg:person.01061214726.76 schema:affiliation grid-institutes:grid.419507.e
    125 schema:familyName Steglich
    126 schema:givenName Frank
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76
    128 rdf:type schema:Person
    129 sg:person.01061422176.06 schema:affiliation grid-institutes:grid.458438.6
    130 schema:familyName Wei
    131 schema:givenName Beipei
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061422176.06
    133 rdf:type schema:Person
    134 sg:person.01127535376.71 schema:affiliation grid-institutes:grid.458438.6
    135 schema:familyName Zhang
    136 schema:givenName Jiahao
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127535376.71
    138 rdf:type schema:Person
    139 sg:person.012471222677.87 schema:affiliation grid-institutes:grid.419507.e
    140 schema:familyName Strydom
    141 schema:givenName A.M.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012471222677.87
    143 rdf:type schema:Person
    144 sg:person.016624535224.83 schema:affiliation grid-institutes:grid.7048.b
    145 schema:familyName Søndergaard
    146 schema:givenName M.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624535224.83
    148 rdf:type schema:Person
    149 sg:person.0616273273.89 schema:affiliation grid-institutes:grid.458438.6
    150 schema:familyName Sun
    151 schema:givenName Peijie
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616273273.89
    153 rdf:type schema:Person
    154 sg:person.0623137215.47 schema:affiliation grid-institutes:grid.7048.b
    155 schema:familyName Iversen
    156 schema:givenName Bo B.
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623137215.47
    158 rdf:type schema:Person
    159 sg:person.0654456660.16 schema:affiliation grid-institutes:grid.5329.d
    160 schema:familyName Tomczak
    161 schema:givenName Jan M.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654456660.16
    163 rdf:type schema:Person
    164 sg:pub.10.1038/nmat2090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014989328
    165 https://doi.org/10.1038/nmat2090
    166 rdf:type schema:CreativeWork
    167 grid-institutes:grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
    168 schema:name Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
    169 Department of Physics, Highly Correlated Matter Research Group, University of Johannesburg, 2006, Auckland Park, South Africa
    170 Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
    171 rdf:type schema:Organization
    172 grid-institutes:grid.458438.6 schema:alternateName Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
    173 schema:name Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
    174 rdf:type schema:Organization
    175 grid-institutes:grid.5329.d schema:alternateName Institute of Solid State Physics, Vienna University of Technology, A-1040, Vienna, Austria
    176 schema:name Institute of Solid State Physics, Vienna University of Technology, A-1040, Vienna, Austria
    177 rdf:type schema:Organization
    178 grid-institutes:grid.7048.b schema:alternateName Department of Chemistry, University of Aarhus, DK-8000, Aarhus C, Denmark
    179 schema:name Department of Chemistry, University of Aarhus, DK-8000, Aarhus C, Denmark
    180 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...