eQTL mapping identifies insertion- and deletion-specific eQTLs in multiple tissues View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05-08

AUTHORS

Jinyan Huang, Jun Chen, Jorge Esparza, Jun Ding, James T. Elder, Goncalo R. Abecasis, Young-Ae Lee, G. Mark Lathrop, Miriam F. Moffatt, William O. C. Cookson, Liming Liang

ABSTRACT

Genome-wide gene expression quantitative trait loci (eQTL) mapping have been focused on single-nucleotide polymorphisms and have helped interpret findings from diseases mapping studies. The functional effect of structure variants, especially short insertions and deletions (indel) has not been well investigated. Here we impute 1,380,133 indels based on the latest 1,000 Genomes Project panel into three eQTL data sets from multiple tissues. Imputation of indels increased 9.9% power and identifies indel-specific eQTLs for 325 genes. We find introns and vicinities of UTRs are more enriched of indel eQTLs and 3.6 (single-tissue)–9.2%(multi-tissue) of previous identified eSNPs were taggers of eindels. Functional analyses identifies epigenetics marks, gene ontology categories and disease GWAS loci affected by SNPs and indels eQTLs showing tissue-consistent or tissue-specific effects. This study provides new insights into the underlying genetic architecture of gene expression across tissues and new resource to interpret function of diseases and traits associated structure variants. More... »

PAGES

6821

References to SciGraph publications

  • 2012-07-22. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing in NATURE GENETICS
  • 2007-09-16. A genome-wide association study of global gene expression in NATURE GENETICS
  • 2012-09-02. Mapping cis- and trans-regulatory effects across multiple tissues in twins in NATURE GENETICS
  • 2005-10. A haplotype map of the human genome in NATURE
  • 2009-10. Finding the missing heritability of complex diseases in NATURE
  • 2007-09-16. Population genomics of human gene expression in NATURE GENETICS
  • 2007-06-17. A new multipoint method for genome-wide association studies by imputation of genotypes in NATURE GENETICS
  • 2009-04-06. A common variant on chromosome 11q13 is associated with atopic dermatitis in NATURE GENETICS
  • 2008-02-10. Multiple loci identified in a genome-wide association study of prostate cancer in NATURE GENETICS
  • 2008-06-29. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease in NATURE GENETICS
  • 2010-11-21. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci in NATURE GENETICS
  • 2004-07-21. Genetic analysis of genome-wide variation in human gene expression in NATURE
  • 2011-03-23. Mapping and analysis of chromatin state dynamics in nine human cell types in NATURE
  • 2012-03-25. Genetics of gene expression in primary immune cells identifies cell type–specific master regulators and roles of HLA alleles in NATURE GENETICS
  • 2008-12-14. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation in NATURE GENETICS
  • 2009-03. Mapping complex disease traits with global gene expression in NATURE REVIEWS GENETICS
  • 2011-10-18. Integrating pathway analysis and genetics of gene expression for genome-wide association study of basal cell carcinoma in HUMAN GENETICS
  • 2009-05-10. Genome-wide association study of blood pressure and hypertension in NATURE GENETICS
  • 2001-12-03. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees in NATURE GENETICS
  • 2012-09-09. Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions in NATURE GENETICS
  • 2010-01-17. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk in NATURE GENETICS
  • 2010-10-27. A map of human genome variation from population-scale sequencing in NATURE
  • 2011-08-14. A genome-wide association study identifies two new risk loci for Graves' disease in NATURE GENETICS
  • 2012-09-05. An integrated encyclopedia of DNA elements in the human genome in NATURE
  • 2010-09-29. Hundreds of variants clustered in genomic loci and biological pathways affect human height in NATURE
  • 2008-03-02. Newly identified genetic risk variants for celiac disease related to the immune response in NATURE GENETICS
  • 2012-12-05. Seventy-five genetic loci influencing the human red blood cell in NATURE
  • 2009-11-15. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease in NATURE GENETICS
  • 2012-10-31. An integrated map of genetic variation from 1,092 human genomes in NATURE
  • 2009-01-04. Ulcerative colitis–risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study in NATURE GENETICS
  • 2008-04-06. Genome-wide association analysis identifies 20 loci that influence adult height in NATURE GENETICS
  • 2007-07-04. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma in NATURE
  • 2008-09. Variation in KLK genes, prostate-specific antigen and risk of prostate cancer in NATURE GENETICS
  • 2010-10-10. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index in NATURE GENETICS
  • 2010-10-10. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms7821

    DOI

    http://dx.doi.org/10.1038/ncomms7821

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053302854

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25951796


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epigenesis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Association Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "INDEL Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Meta-Analysis as Topic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organ Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology, Harvard School of Public Health, 02115, Boston, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China", 
                "Department of Epidemiology, Harvard School of Public Health, 02115, Boston, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Jinyan", 
            "id": "sg:person.01363744764.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363744764.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Biomedical Statistics and Informatics, Mayo Clinic, 55905, Rochester, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Biostatistics, Harvard School of Public Health, 02115, Boston, Massachusetts, USA", 
                "Division of Biomedical Statistics and Informatics, Mayo Clinic, 55905, Rochester, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Jun", 
            "id": "sg:person.01023412627.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Delbr\u00fcck-Center for Molecular Medicine, 13092, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419491.0", 
              "name": [
                "Max-Delbr\u00fcck-Center for Molecular Medicine, 13092, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Esparza", 
            "givenName": "Jorge", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 21224, Baltimore, Maryland, USA", 
              "id": "http://www.grid.ac/institutes/grid.419475.a", 
              "name": [
                "Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 21224, Baltimore, Maryland, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ding", 
            "givenName": "Jun", 
            "id": "sg:person.0623331307.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623331307.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ann Arbor Veterans Affairs Hospital, 48105, Ann Arbor, Michigan, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Dermatology, University of Michigan Medical School, 48109, Ann Arbor, Michigan, USA", 
                "Ann Arbor Veterans Affairs Hospital, 48105, Ann Arbor, Michigan, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Elder", 
            "givenName": "James T.", 
            "id": "sg:person.013323152642.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323152642.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan, Ann Arbor, 48109, Michigan, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Biostatistics, University of Michigan, Ann Arbor, 48109, Michigan, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abecasis", 
            "givenName": "Goncalo R.", 
            "id": "sg:person.0641525362.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641525362.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Delbr\u00fcck-Center for Molecular Medicine, 13092, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419491.0", 
              "name": [
                "Max-Delbr\u00fcck-Center for Molecular Medicine, 13092, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Young-Ae", 
            "id": "sg:person.01010620210.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010620210.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Human and Medical Genetics, McGill University and G\u00e9nome Qu\u00e9bec Innovation Centre, H3A 0G1, Montr\u00e9al, Canada", 
              "id": "http://www.grid.ac/institutes/grid.411640.6", 
              "name": [
                "Department of Human and Medical Genetics, McGill University and G\u00e9nome Qu\u00e9bec Innovation Centre, H3A 0G1, Montr\u00e9al, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mark Lathrop", 
            "givenName": "G.", 
            "id": "sg:person.01144654531.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144654531.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Heart and Lung Institute, Imperial College London, SW3 6LY, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "National Heart and Lung Institute, Imperial College London, SW3 6LY, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moffatt", 
            "givenName": "Miriam F.", 
            "id": "sg:person.01062415655.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062415655.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Heart and Lung Institute, Imperial College London, SW3 6LY, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "National Heart and Lung Institute, Imperial College London, SW3 6LY, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cookson", 
            "givenName": "William O. C.", 
            "id": "sg:person.012341230317.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012341230317.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Harvard School of Public Health, 02115, Boston, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Epidemiology, Harvard School of Public Health, 02115, Boston, Massachusetts, USA", 
                "Department of Biostatistics, Harvard School of Public Health, 02115, Boston, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liang", 
            "givenName": "Liming", 
            "id": "sg:person.0725506330.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725506330.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ng0908-1032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026440192", 
              "https://doi.org/10.1038/ng0908-1032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014505872", 
              "https://doi.org/10.1038/nature06014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014225224", 
              "https://doi.org/10.1038/ng2109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037714920", 
              "https://doi.org/10.1038/nature09410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-011-1107-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078464062", 
              "https://doi.org/10.1007/s00439-011-1107-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029065430", 
              "https://doi.org/10.1038/nature11247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013643799", 
              "https://doi.org/10.1038/ng.686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043304663", 
              "https://doi.org/10.1038/nature09906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014097668", 
              "https://doi.org/10.1038/ng.102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.898", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002559443", 
              "https://doi.org/10.1038/ng.898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019025470", 
              "https://doi.org/10.1038/ng.717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000661742", 
              "https://doi.org/10.1038/nature11632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051674872", 
              "https://doi.org/10.1038/ng.91"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004642598", 
              "https://doi.org/10.1038/ng.520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001826873", 
              "https://doi.org/10.1038/nature11677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018142595", 
              "https://doi.org/10.1038/ng.384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042359509", 
              "https://doi.org/10.1038/nature02797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023921533", 
              "https://doi.org/10.1038/ng.121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047891962", 
              "https://doi.org/10.1038/ng.2205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009732380", 
              "https://doi.org/10.1038/ng.275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028473347", 
              "https://doi.org/10.1038/nrg2537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018183324", 
              "https://doi.org/10.1038/ng.485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034183682", 
              "https://doi.org/10.1038/ng.347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026250562", 
              "https://doi.org/10.1038/ng2142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046979341", 
              "https://doi.org/10.1038/ng2088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003718794", 
              "https://doi.org/10.1038/ng.2394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029723318", 
              "https://doi.org/10.1038/ng.2354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037442764", 
              "https://doi.org/10.1038/ng.685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026939578", 
              "https://doi.org/10.1038/ng.287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017293702", 
              "https://doi.org/10.1038/nature04226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035894615", 
              "https://doi.org/10.1038/ng.175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037468143", 
              "https://doi.org/10.1038/ng.2411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005147626", 
              "https://doi.org/10.1038/nature08494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041343500", 
              "https://doi.org/10.1038/ng786"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-05-08", 
        "datePublishedReg": "2015-05-08", 
        "description": "Genome-wide gene expression quantitative trait loci (eQTL) mapping have been focused on single-nucleotide polymorphisms and have helped interpret findings from diseases mapping studies. The functional effect of structure variants, especially short insertions and deletions (indel) has not been well investigated. Here we impute 1,380,133 indels based on the latest 1,000 Genomes Project panel into three eQTL data sets from multiple tissues. Imputation of indels increased 9.9% power and identifies indel-specific eQTLs for 325 genes. We find introns and vicinities of UTRs are more enriched of indel eQTLs and 3.6 (single-tissue)\u20139.2%(multi-tissue) of previous identified eSNPs were taggers of eindels. Functional analyses identifies epigenetics marks, gene ontology categories and disease GWAS loci affected by SNPs and indels eQTLs showing tissue-consistent or tissue-specific effects. This study provides new insights into the underlying genetic architecture of gene expression across tissues and new resource to interpret function of diseases and traits associated structure variants.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms7821", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3641844", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3639828", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2521949", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2463475", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "expression quantitative trait locus (eQTL) mapping", 
          "quantitative trait locus (QTL) mapping", 
          "multiple tissues", 
          "gene ontology categories", 
          "eQTL data sets", 
          "epigenetic marks", 
          "GWAS loci", 
          "genetic architecture", 
          "function of disease", 
          "eQTL mapping", 
          "ontology categories", 
          "locus mapping", 
          "single nucleotide polymorphisms", 
          "disease mapping studies", 
          "tissue-specific effects", 
          "gene expression", 
          "functional analysis", 
          "short insertions", 
          "eQTLs", 
          "structure variants", 
          "indels", 
          "mapping studies", 
          "functional effects", 
          "new insights", 
          "new resources", 
          "eQTL", 
          "introns", 
          "eSNPs", 
          "UTR", 
          "tissue", 
          "genes", 
          "loci", 
          "variants", 
          "traits", 
          "SNPs", 
          "deletion", 
          "insertion", 
          "polymorphism", 
          "expression", 
          "mapping", 
          "marks", 
          "insights", 
          "function", 
          "data sets", 
          "study", 
          "effect", 
          "disease", 
          "analysis", 
          "panel", 
          "imputation", 
          "resources", 
          "findings", 
          "vicinity", 
          "architecture", 
          "set", 
          "categories", 
          "power", 
          "tagger"
        ], 
        "name": "eQTL mapping identifies insertion- and deletion-specific eQTLs in multiple tissues", 
        "pagination": "6821", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053302854"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms7821"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25951796"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms7821", 
          "https://app.dimensions.ai/details/publication/pub.1053302854"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_659.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms7821"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms7821'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms7821'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms7821'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms7821'


     

    This table displays all metadata directly associated to this object as RDF triples.

    405 TRIPLES      21 PREDICATES      129 URIs      86 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms7821 schema:about N0168ca13df36442582638fdb1027f46e
    2 N12ec200fdd10495d96da17f1b02786b7
    3 N2e78bed294734ba79b7c8a06e0b19629
    4 N7a8b77bccdca464cabb8abe0be67fbad
    5 N7ced8e2207bc429697485e73a9ad4247
    6 N9040f93287534abaa83ce74190b43d3f
    7 N9ee1c1b080124ebabba778c8d7a9780e
    8 Na2503733ac82428694d2e1a70b62fa08
    9 Na49088215422490aa0810b2128246abf
    10 Nca49d7b5f939403d83a1d1d234e5a1c9
    11 Nf840fbedc5354bc380d4100d115dab66
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author Nc4fb0e40f8784c258235e735e85b9986
    15 schema:citation sg:pub.10.1007/s00439-011-1107-5
    16 sg:pub.10.1038/nature02797
    17 sg:pub.10.1038/nature04226
    18 sg:pub.10.1038/nature06014
    19 sg:pub.10.1038/nature08494
    20 sg:pub.10.1038/nature09410
    21 sg:pub.10.1038/nature09534
    22 sg:pub.10.1038/nature09906
    23 sg:pub.10.1038/nature11247
    24 sg:pub.10.1038/nature11632
    25 sg:pub.10.1038/nature11677
    26 sg:pub.10.1038/ng.102
    27 sg:pub.10.1038/ng.121
    28 sg:pub.10.1038/ng.175
    29 sg:pub.10.1038/ng.2205
    30 sg:pub.10.1038/ng.2354
    31 sg:pub.10.1038/ng.2394
    32 sg:pub.10.1038/ng.2411
    33 sg:pub.10.1038/ng.275
    34 sg:pub.10.1038/ng.287
    35 sg:pub.10.1038/ng.347
    36 sg:pub.10.1038/ng.384
    37 sg:pub.10.1038/ng.485
    38 sg:pub.10.1038/ng.520
    39 sg:pub.10.1038/ng.685
    40 sg:pub.10.1038/ng.686
    41 sg:pub.10.1038/ng.717
    42 sg:pub.10.1038/ng.898
    43 sg:pub.10.1038/ng.91
    44 sg:pub.10.1038/ng0908-1032
    45 sg:pub.10.1038/ng2088
    46 sg:pub.10.1038/ng2109
    47 sg:pub.10.1038/ng2142
    48 sg:pub.10.1038/ng786
    49 sg:pub.10.1038/nrg2537
    50 schema:datePublished 2015-05-08
    51 schema:datePublishedReg 2015-05-08
    52 schema:description Genome-wide gene expression quantitative trait loci (eQTL) mapping have been focused on single-nucleotide polymorphisms and have helped interpret findings from diseases mapping studies. The functional effect of structure variants, especially short insertions and deletions (indel) has not been well investigated. Here we impute 1,380,133 indels based on the latest 1,000 Genomes Project panel into three eQTL data sets from multiple tissues. Imputation of indels increased 9.9% power and identifies indel-specific eQTLs for 325 genes. We find introns and vicinities of UTRs are more enriched of indel eQTLs and 3.6 (single-tissue)–9.2%(multi-tissue) of previous identified eSNPs were taggers of eindels. Functional analyses identifies epigenetics marks, gene ontology categories and disease GWAS loci affected by SNPs and indels eQTLs showing tissue-consistent or tissue-specific effects. This study provides new insights into the underlying genetic architecture of gene expression across tissues and new resource to interpret function of diseases and traits associated structure variants.
    53 schema:genre article
    54 schema:isAccessibleForFree true
    55 schema:isPartOf N67b65c5a83984e0191b3917efab06753
    56 N938f8560b5c04efd88ae46e8c0ef00a2
    57 sg:journal.1043282
    58 schema:keywords GWAS loci
    59 SNPs
    60 UTR
    61 analysis
    62 architecture
    63 categories
    64 data sets
    65 deletion
    66 disease
    67 disease mapping studies
    68 eQTL
    69 eQTL data sets
    70 eQTL mapping
    71 eQTLs
    72 eSNPs
    73 effect
    74 epigenetic marks
    75 expression
    76 expression quantitative trait locus (eQTL) mapping
    77 findings
    78 function
    79 function of disease
    80 functional analysis
    81 functional effects
    82 gene expression
    83 gene ontology categories
    84 genes
    85 genetic architecture
    86 imputation
    87 indels
    88 insertion
    89 insights
    90 introns
    91 loci
    92 locus mapping
    93 mapping
    94 mapping studies
    95 marks
    96 multiple tissues
    97 new insights
    98 new resources
    99 ontology categories
    100 panel
    101 polymorphism
    102 power
    103 quantitative trait locus (QTL) mapping
    104 resources
    105 set
    106 short insertions
    107 single nucleotide polymorphisms
    108 structure variants
    109 study
    110 tagger
    111 tissue
    112 tissue-specific effects
    113 traits
    114 variants
    115 vicinity
    116 schema:name eQTL mapping identifies insertion- and deletion-specific eQTLs in multiple tissues
    117 schema:pagination 6821
    118 schema:productId N4df2af94da334f40ae415453cfa36311
    119 N7590131f7601465f876e7872f1432af3
    120 Na512ffa6dd2542eaac386c22a7abe090
    121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053302854
    122 https://doi.org/10.1038/ncomms7821
    123 schema:sdDatePublished 2022-09-02T15:58
    124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    125 schema:sdPublisher Ndd5af0922695414f9e7ab70230a3c527
    126 schema:url https://doi.org/10.1038/ncomms7821
    127 sgo:license sg:explorer/license/
    128 sgo:sdDataset articles
    129 rdf:type schema:ScholarlyArticle
    130 N0168ca13df36442582638fdb1027f46e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name INDEL Mutation
    132 rdf:type schema:DefinedTerm
    133 N12ec200fdd10495d96da17f1b02786b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Humans
    135 rdf:type schema:DefinedTerm
    136 N15f731c31d8c42a0845a603fbf054e5f schema:affiliation grid-institutes:grid.419491.0
    137 schema:familyName Esparza
    138 schema:givenName Jorge
    139 rdf:type schema:Person
    140 N1f3a1a62fd4a4134967a53b25cd9ff6a rdf:first sg:person.012341230317.25
    141 rdf:rest Ne6eef2b896ba47be81e7308a387f03a6
    142 N2e78bed294734ba79b7c8a06e0b19629 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Organ Specificity
    144 rdf:type schema:DefinedTerm
    145 N4df2af94da334f40ae415453cfa36311 schema:name pubmed_id
    146 schema:value 25951796
    147 rdf:type schema:PropertyValue
    148 N4f4d7d9021c944ae86c34c2d15bdf3fd rdf:first sg:person.0623331307.36
    149 rdf:rest N8c7594a74e9c4a8fb9efa3fa4f7607f3
    150 N67b65c5a83984e0191b3917efab06753 schema:issueNumber 1
    151 rdf:type schema:PublicationIssue
    152 N7590131f7601465f876e7872f1432af3 schema:name dimensions_id
    153 schema:value pub.1053302854
    154 rdf:type schema:PropertyValue
    155 N7a8b77bccdca464cabb8abe0be67fbad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Genetic Association Studies
    157 rdf:type schema:DefinedTerm
    158 N7ced8e2207bc429697485e73a9ad4247 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Meta-Analysis as Topic
    160 rdf:type schema:DefinedTerm
    161 N8c7594a74e9c4a8fb9efa3fa4f7607f3 rdf:first sg:person.013323152642.06
    162 rdf:rest Nacc7ea96bc7b42319c37ef98890ccd64
    163 N9040f93287534abaa83ce74190b43d3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Chromosome Mapping
    165 rdf:type schema:DefinedTerm
    166 N938f8560b5c04efd88ae46e8c0ef00a2 schema:volumeNumber 6
    167 rdf:type schema:PublicationVolume
    168 N9ee1c1b080124ebabba778c8d7a9780e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Genome-Wide Association Study
    170 rdf:type schema:DefinedTerm
    171 Na2503733ac82428694d2e1a70b62fa08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Polymorphism, Single Nucleotide
    173 rdf:type schema:DefinedTerm
    174 Na49088215422490aa0810b2128246abf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Child
    176 rdf:type schema:DefinedTerm
    177 Na512ffa6dd2542eaac386c22a7abe090 schema:name doi
    178 schema:value 10.1038/ncomms7821
    179 rdf:type schema:PropertyValue
    180 Nacc7ea96bc7b42319c37ef98890ccd64 rdf:first sg:person.0641525362.39
    181 rdf:rest Nd40a62a6f5f5483884d424e6dd8de0ad
    182 Nb1c7f7c23f514f39be562ee0b6cbe552 rdf:first N15f731c31d8c42a0845a603fbf054e5f
    183 rdf:rest N4f4d7d9021c944ae86c34c2d15bdf3fd
    184 Nbb3e3ac431cd41c89aa215abbc3ec0f8 rdf:first sg:person.01062415655.03
    185 rdf:rest N1f3a1a62fd4a4134967a53b25cd9ff6a
    186 Nc4fb0e40f8784c258235e735e85b9986 rdf:first sg:person.01363744764.18
    187 rdf:rest Ne7727c51d2384f9a8403947e90a80d73
    188 Nca49d7b5f939403d83a1d1d234e5a1c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Epigenesis, Genetic
    190 rdf:type schema:DefinedTerm
    191 Nd40a62a6f5f5483884d424e6dd8de0ad rdf:first sg:person.01010620210.88
    192 rdf:rest Nef1ac8bad8ff423dbd012b42a706201c
    193 Ndd5af0922695414f9e7ab70230a3c527 schema:name Springer Nature - SN SciGraph project
    194 rdf:type schema:Organization
    195 Ne6eef2b896ba47be81e7308a387f03a6 rdf:first sg:person.0725506330.81
    196 rdf:rest rdf:nil
    197 Ne7727c51d2384f9a8403947e90a80d73 rdf:first sg:person.01023412627.52
    198 rdf:rest Nb1c7f7c23f514f39be562ee0b6cbe552
    199 Nef1ac8bad8ff423dbd012b42a706201c rdf:first sg:person.01144654531.11
    200 rdf:rest Nbb3e3ac431cd41c89aa215abbc3ec0f8
    201 Nf840fbedc5354bc380d4100d115dab66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Quantitative Trait Loci
    203 rdf:type schema:DefinedTerm
    204 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Biological Sciences
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Genetics
    209 rdf:type schema:DefinedTerm
    210 sg:grant.2463475 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms7821
    211 rdf:type schema:MonetaryGrant
    212 sg:grant.2521949 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms7821
    213 rdf:type schema:MonetaryGrant
    214 sg:grant.3639828 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms7821
    215 rdf:type schema:MonetaryGrant
    216 sg:grant.3641844 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms7821
    217 rdf:type schema:MonetaryGrant
    218 sg:journal.1043282 schema:issn 2041-1723
    219 schema:name Nature Communications
    220 schema:publisher Springer Nature
    221 rdf:type schema:Periodical
    222 sg:person.01010620210.88 schema:affiliation grid-institutes:grid.419491.0
    223 schema:familyName Lee
    224 schema:givenName Young-Ae
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010620210.88
    226 rdf:type schema:Person
    227 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
    228 schema:familyName Chen
    229 schema:givenName Jun
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
    231 rdf:type schema:Person
    232 sg:person.01062415655.03 schema:affiliation grid-institutes:grid.7445.2
    233 schema:familyName Moffatt
    234 schema:givenName Miriam F.
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062415655.03
    236 rdf:type schema:Person
    237 sg:person.01144654531.11 schema:affiliation grid-institutes:grid.411640.6
    238 schema:familyName Mark Lathrop
    239 schema:givenName G.
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144654531.11
    241 rdf:type schema:Person
    242 sg:person.012341230317.25 schema:affiliation grid-institutes:grid.7445.2
    243 schema:familyName Cookson
    244 schema:givenName William O. C.
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012341230317.25
    246 rdf:type schema:Person
    247 sg:person.013323152642.06 schema:affiliation grid-institutes:None
    248 schema:familyName Elder
    249 schema:givenName James T.
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323152642.06
    251 rdf:type schema:Person
    252 sg:person.01363744764.18 schema:affiliation grid-institutes:grid.38142.3c
    253 schema:familyName Huang
    254 schema:givenName Jinyan
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363744764.18
    256 rdf:type schema:Person
    257 sg:person.0623331307.36 schema:affiliation grid-institutes:grid.419475.a
    258 schema:familyName Ding
    259 schema:givenName Jun
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623331307.36
    261 rdf:type schema:Person
    262 sg:person.0641525362.39 schema:affiliation grid-institutes:grid.214458.e
    263 schema:familyName Abecasis
    264 schema:givenName Goncalo R.
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641525362.39
    266 rdf:type schema:Person
    267 sg:person.0725506330.81 schema:affiliation grid-institutes:grid.38142.3c
    268 schema:familyName Liang
    269 schema:givenName Liming
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725506330.81
    271 rdf:type schema:Person
    272 sg:pub.10.1007/s00439-011-1107-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078464062
    273 https://doi.org/10.1007/s00439-011-1107-5
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/nature02797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042359509
    276 https://doi.org/10.1038/nature02797
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
    279 https://doi.org/10.1038/nature04226
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/nature06014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014505872
    282 https://doi.org/10.1038/nature06014
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/nature08494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005147626
    285 https://doi.org/10.1038/nature08494
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/nature09410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037714920
    288 https://doi.org/10.1038/nature09410
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
    291 https://doi.org/10.1038/nature09534
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/nature09906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043304663
    294 https://doi.org/10.1038/nature09906
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
    297 https://doi.org/10.1038/nature11247
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/nature11632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661742
    300 https://doi.org/10.1038/nature11632
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/nature11677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001826873
    303 https://doi.org/10.1038/nature11677
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/ng.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014097668
    306 https://doi.org/10.1038/ng.102
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/ng.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023921533
    309 https://doi.org/10.1038/ng.121
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/ng.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035894615
    312 https://doi.org/10.1038/ng.175
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1038/ng.2205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047891962
    315 https://doi.org/10.1038/ng.2205
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/ng.2354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029723318
    318 https://doi.org/10.1038/ng.2354
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1038/ng.2394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003718794
    321 https://doi.org/10.1038/ng.2394
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1038/ng.2411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037468143
    324 https://doi.org/10.1038/ng.2411
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/ng.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009732380
    327 https://doi.org/10.1038/ng.275
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1038/ng.287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026939578
    330 https://doi.org/10.1038/ng.287
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1038/ng.347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034183682
    333 https://doi.org/10.1038/ng.347
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1038/ng.384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018142595
    336 https://doi.org/10.1038/ng.384
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1038/ng.485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018183324
    339 https://doi.org/10.1038/ng.485
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1038/ng.520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004642598
    342 https://doi.org/10.1038/ng.520
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1038/ng.685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037442764
    345 https://doi.org/10.1038/ng.685
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1038/ng.686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013643799
    348 https://doi.org/10.1038/ng.686
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1038/ng.717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019025470
    351 https://doi.org/10.1038/ng.717
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1038/ng.898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002559443
    354 https://doi.org/10.1038/ng.898
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1038/ng.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051674872
    357 https://doi.org/10.1038/ng.91
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1038/ng0908-1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026440192
    360 https://doi.org/10.1038/ng0908-1032
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1038/ng2088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046979341
    363 https://doi.org/10.1038/ng2088
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1038/ng2109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014225224
    366 https://doi.org/10.1038/ng2109
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1038/ng2142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026250562
    369 https://doi.org/10.1038/ng2142
    370 rdf:type schema:CreativeWork
    371 sg:pub.10.1038/ng786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041343500
    372 https://doi.org/10.1038/ng786
    373 rdf:type schema:CreativeWork
    374 sg:pub.10.1038/nrg2537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028473347
    375 https://doi.org/10.1038/nrg2537
    376 rdf:type schema:CreativeWork
    377 grid-institutes:None schema:alternateName Ann Arbor Veterans Affairs Hospital, 48105, Ann Arbor, Michigan, USA
    378 schema:name Ann Arbor Veterans Affairs Hospital, 48105, Ann Arbor, Michigan, USA
    379 Department of Dermatology, University of Michigan Medical School, 48109, Ann Arbor, Michigan, USA
    380 rdf:type schema:Organization
    381 grid-institutes:grid.214458.e schema:alternateName Department of Biostatistics, University of Michigan, Ann Arbor, 48109, Michigan, USA
    382 schema:name Department of Biostatistics, University of Michigan, Ann Arbor, 48109, Michigan, USA
    383 rdf:type schema:Organization
    384 grid-institutes:grid.38142.3c schema:alternateName Department of Biostatistics, Harvard School of Public Health, 02115, Boston, Massachusetts, USA
    385 Department of Epidemiology, Harvard School of Public Health, 02115, Boston, Massachusetts, USA
    386 schema:name Department of Biostatistics, Harvard School of Public Health, 02115, Boston, Massachusetts, USA
    387 Department of Epidemiology, Harvard School of Public Health, 02115, Boston, Massachusetts, USA
    388 State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
    389 rdf:type schema:Organization
    390 grid-institutes:grid.411640.6 schema:alternateName Department of Human and Medical Genetics, McGill University and Génome Québec Innovation Centre, H3A 0G1, Montréal, Canada
    391 schema:name Department of Human and Medical Genetics, McGill University and Génome Québec Innovation Centre, H3A 0G1, Montréal, Canada
    392 rdf:type schema:Organization
    393 grid-institutes:grid.419475.a schema:alternateName Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 21224, Baltimore, Maryland, USA
    394 schema:name Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 21224, Baltimore, Maryland, USA
    395 rdf:type schema:Organization
    396 grid-institutes:grid.419491.0 schema:alternateName Max-Delbrück-Center for Molecular Medicine, 13092, Berlin, Germany
    397 schema:name Max-Delbrück-Center for Molecular Medicine, 13092, Berlin, Germany
    398 rdf:type schema:Organization
    399 grid-institutes:grid.66875.3a schema:alternateName Division of Biomedical Statistics and Informatics, Mayo Clinic, 55905, Rochester, Minnesota, USA
    400 schema:name Department of Biostatistics, Harvard School of Public Health, 02115, Boston, Massachusetts, USA
    401 Division of Biomedical Statistics and Informatics, Mayo Clinic, 55905, Rochester, Minnesota, USA
    402 rdf:type schema:Organization
    403 grid-institutes:grid.7445.2 schema:alternateName National Heart and Lung Institute, Imperial College London, SW3 6LY, London, UK
    404 schema:name National Heart and Lung Institute, Imperial College London, SW3 6LY, London, UK
    405 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...