Ultrafast helicity control of surface currents in topological insulators with near-unity fidelity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Christoph Kastl, Christoph Karnetzky, Helmut Karl, Alexander W. Holleitner

ABSTRACT

In recent years, a class of solid-state materials, called three-dimensional topological insulators, has emerged. In the bulk, a topological insulator behaves like an ordinary insulator with a band gap. At the surface, conducting gapless states exist showing remarkable properties such as helical Dirac dispersion and suppression of backscattering of spin-polarized charge carriers. The characterization and control of the surface states via transport experiments is often hindered by residual bulk contributions. Here we show that surface currents in Bi2Se3 can be controlled by circularly polarized light on a picosecond timescale with a fidelity near unity even at room temperature. We reveal the temporal separation of such ultrafast helicity-dependent surface currents from photo-induced thermoelectric and drift currents in the bulk. Our results uncover the functionality of ultrafast optoelectronic devices based on surface currents in topological insulators. More... »

PAGES

6617

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms7617

DOI

http://dx.doi.org/10.1038/ncomms7617

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009696797

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25808213


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanosystems Initiative Munich", 
          "id": "https://www.grid.ac/institutes/grid.452665.6", 
          "name": [
            "Walter Schottky Institut and Physik-Department, Technische Universit\u00e4t M\u00fcnchen, Am Coulombwall 4a, 85748 Garching, Germany", 
            "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kastl", 
        "givenName": "Christoph", 
        "id": "sg:person.010417556703.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010417556703.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanosystems Initiative Munich", 
          "id": "https://www.grid.ac/institutes/grid.452665.6", 
          "name": [
            "Walter Schottky Institut and Physik-Department, Technische Universit\u00e4t M\u00fcnchen, Am Coulombwall 4a, 85748 Garching, Germany", 
            "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karnetzky", 
        "givenName": "Christoph", 
        "id": "sg:person.012131273657.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131273657.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institute of Physics, University of Augsburg, 86135 Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karl", 
        "givenName": "Helmut", 
        "id": "sg:person.01232553200.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232553200.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanosystems Initiative Munich", 
          "id": "https://www.grid.ac/institutes/grid.452665.6", 
          "name": [
            "Walter Schottky Institut and Physik-Department, Technische Universit\u00e4t M\u00fcnchen, Am Coulombwall 4a, 85748 Garching, Germany", 
            "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holleitner", 
        "givenName": "Alexander W.", 
        "id": "sg:person.0711543207.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711543207.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.107.207602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000153165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.207602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000153165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.176602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000736621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.176602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000736621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.116401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000772801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.116401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000772801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.106803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003001378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.106803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003001378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003672267", 
          "https://doi.org/10.1038/nature09189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003672267", 
          "https://doi.org/10.1038/nature09189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl3019802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006189331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.205133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009063499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.205133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009063499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1173034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009232583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1173034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009232583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.075144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011243524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.075144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011243524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015312076", 
          "https://doi.org/10.1038/ncomms1656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.2221690222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015731248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.201200181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022301714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023255934", 
          "https://doi.org/10.1038/nphys2572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.077401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024120841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.077401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024120841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.205407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025890661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.205407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025890661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028319231", 
          "https://doi.org/10.1038/nnano.2014.16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.136802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029841302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.136802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029841302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031026930", 
          "https://doi.org/10.1038/nphys2286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.245107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036794072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.245107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036794072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040268093", 
          "https://doi.org/10.1038/srep01757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.195132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040801862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.195132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040801862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.035309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041379598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.035309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041379598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042104562", 
          "https://doi.org/10.1038/nnano.2011.214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4772547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046747045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047390349", 
          "https://doi.org/10.1038/nature08234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047390349", 
          "https://doi.org/10.1038/nature08234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.115407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047654023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.115407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047654023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049300751", 
          "https://doi.org/10.1038/ncomms4003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.127401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049664164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.127401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049664164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/15/20/204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050275016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl301035x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4754108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058060074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.14698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.14698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.1962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.1962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.1983.1071904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061304567"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "In recent years, a class of solid-state materials, called three-dimensional topological insulators, has emerged. In the bulk, a topological insulator behaves like an ordinary insulator with a band gap. At the surface, conducting gapless states exist showing remarkable properties such as helical Dirac dispersion and suppression of backscattering of spin-polarized charge carriers. The characterization and control of the surface states via transport experiments is often hindered by residual bulk contributions. Here we show that surface currents in Bi2Se3 can be controlled by circularly polarized light on a picosecond timescale with a fidelity near unity even at room temperature. We reveal the temporal separation of such ultrafast helicity-dependent surface currents from photo-induced thermoelectric and drift currents in the bulk. Our results uncover the functionality of ultrafast optoelectronic devices based on surface currents in topological insulators. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms7617", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3799276", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Ultrafast helicity control of surface currents in topological insulators with near-unity fidelity", 
    "pagination": "6617", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e31c4badd10f822d1d7d9ada29756401d683b6671b3f89235c7f3d4ae406373"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25808213"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms7617"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009696797"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms7617", 
      "https://app.dimensions.ai/details/publication/pub.1009696797"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms7617"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms7617'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms7617'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms7617'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms7617'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms7617 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N0f96927efcf74cc5b83039a27b1e467b
4 schema:citation sg:pub.10.1038/nature08234
5 sg:pub.10.1038/nature09189
6 sg:pub.10.1038/ncomms1656
7 sg:pub.10.1038/ncomms4003
8 sg:pub.10.1038/nnano.2011.214
9 sg:pub.10.1038/nnano.2014.16
10 sg:pub.10.1038/nphys2286
11 sg:pub.10.1038/nphys2572
12 sg:pub.10.1038/srep01757
13 https://doi.org/10.1002/andp.201200181
14 https://doi.org/10.1002/pssb.2221690222
15 https://doi.org/10.1021/nl301035x
16 https://doi.org/10.1021/nl3019802
17 https://doi.org/10.1063/1.4754108
18 https://doi.org/10.1063/1.4772547
19 https://doi.org/10.1088/0953-8984/15/20/204
20 https://doi.org/10.1103/physrevb.57.14698
21 https://doi.org/10.1103/physrevb.81.115407
22 https://doi.org/10.1103/physrevb.81.205407
23 https://doi.org/10.1103/physrevb.82.245107
24 https://doi.org/10.1103/physrevb.83.035309
25 https://doi.org/10.1103/physrevb.86.205133
26 https://doi.org/10.1103/physrevb.88.075144
27 https://doi.org/10.1103/physrevb.88.195132
28 https://doi.org/10.1103/physrevlett.104.116401
29 https://doi.org/10.1103/physrevlett.105.076802
30 https://doi.org/10.1103/physrevlett.105.176602
31 https://doi.org/10.1103/physrevlett.107.077401
32 https://doi.org/10.1103/physrevlett.107.207602
33 https://doi.org/10.1103/physrevlett.109.127401
34 https://doi.org/10.1103/physrevlett.111.136802
35 https://doi.org/10.1103/physrevlett.59.1962
36 https://doi.org/10.1103/physrevlett.98.106803
37 https://doi.org/10.1103/revmodphys.82.3045
38 https://doi.org/10.1103/revmodphys.83.1057
39 https://doi.org/10.1109/jqe.1983.1071904
40 https://doi.org/10.1126/science.1173034
41 schema:datePublished 2015-12
42 schema:datePublishedReg 2015-12-01
43 schema:description In recent years, a class of solid-state materials, called three-dimensional topological insulators, has emerged. In the bulk, a topological insulator behaves like an ordinary insulator with a band gap. At the surface, conducting gapless states exist showing remarkable properties such as helical Dirac dispersion and suppression of backscattering of spin-polarized charge carriers. The characterization and control of the surface states via transport experiments is often hindered by residual bulk contributions. Here we show that surface currents in Bi2Se3 can be controlled by circularly polarized light on a picosecond timescale with a fidelity near unity even at room temperature. We reveal the temporal separation of such ultrafast helicity-dependent surface currents from photo-induced thermoelectric and drift currents in the bulk. Our results uncover the functionality of ultrafast optoelectronic devices based on surface currents in topological insulators.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N203debfab1ce4da987deb021c8caa2dc
48 N946cf3a5ad7a410bb6915bdde6f765bd
49 sg:journal.1043282
50 schema:name Ultrafast helicity control of surface currents in topological insulators with near-unity fidelity
51 schema:pagination 6617
52 schema:productId N89b749e0b24b4dcfa5324ed3a020df17
53 N95f83bf82b6849c5a303a6f49c832b42
54 Nb7bd877ca88b4136b9a3ee6eb64e104c
55 Nd158c1f84b824125a97536fb3d7b63d1
56 Nd30616024aec4f8696cfcf0296c04b0f
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009696797
58 https://doi.org/10.1038/ncomms7617
59 schema:sdDatePublished 2019-04-10T22:20
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N72c8632bd1df41a199b7f82e136370e0
62 schema:url https://www.nature.com/articles/ncomms7617
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0d29f5c4c1e84faba231763e30c0ba52 rdf:first sg:person.012131273657.78
67 rdf:rest N2fa729b800f544d793e0a1625b486bb5
68 N0f96927efcf74cc5b83039a27b1e467b rdf:first sg:person.010417556703.85
69 rdf:rest N0d29f5c4c1e84faba231763e30c0ba52
70 N203debfab1ce4da987deb021c8caa2dc schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N2fa729b800f544d793e0a1625b486bb5 rdf:first sg:person.01232553200.78
73 rdf:rest N76c643b3fd204978b5b9403555533c90
74 N72c8632bd1df41a199b7f82e136370e0 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N76c643b3fd204978b5b9403555533c90 rdf:first sg:person.0711543207.84
77 rdf:rest rdf:nil
78 N89b749e0b24b4dcfa5324ed3a020df17 schema:name readcube_id
79 schema:value 2e31c4badd10f822d1d7d9ada29756401d683b6671b3f89235c7f3d4ae406373
80 rdf:type schema:PropertyValue
81 N946cf3a5ad7a410bb6915bdde6f765bd schema:volumeNumber 6
82 rdf:type schema:PublicationVolume
83 N95f83bf82b6849c5a303a6f49c832b42 schema:name nlm_unique_id
84 schema:value 101528555
85 rdf:type schema:PropertyValue
86 Nb7bd877ca88b4136b9a3ee6eb64e104c schema:name pubmed_id
87 schema:value 25808213
88 rdf:type schema:PropertyValue
89 Nd158c1f84b824125a97536fb3d7b63d1 schema:name dimensions_id
90 schema:value pub.1009696797
91 rdf:type schema:PropertyValue
92 Nd30616024aec4f8696cfcf0296c04b0f schema:name doi
93 schema:value 10.1038/ncomms7617
94 rdf:type schema:PropertyValue
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
99 schema:name Materials Engineering
100 rdf:type schema:DefinedTerm
101 sg:grant.3799276 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms7617
102 rdf:type schema:MonetaryGrant
103 sg:journal.1043282 schema:issn 2041-1723
104 schema:name Nature Communications
105 rdf:type schema:Periodical
106 sg:person.010417556703.85 schema:affiliation https://www.grid.ac/institutes/grid.452665.6
107 schema:familyName Kastl
108 schema:givenName Christoph
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010417556703.85
110 rdf:type schema:Person
111 sg:person.012131273657.78 schema:affiliation https://www.grid.ac/institutes/grid.452665.6
112 schema:familyName Karnetzky
113 schema:givenName Christoph
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131273657.78
115 rdf:type schema:Person
116 sg:person.01232553200.78 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
117 schema:familyName Karl
118 schema:givenName Helmut
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232553200.78
120 rdf:type schema:Person
121 sg:person.0711543207.84 schema:affiliation https://www.grid.ac/institutes/grid.452665.6
122 schema:familyName Holleitner
123 schema:givenName Alexander W.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711543207.84
125 rdf:type schema:Person
126 sg:pub.10.1038/nature08234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047390349
127 https://doi.org/10.1038/nature08234
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature09189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003672267
130 https://doi.org/10.1038/nature09189
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/ncomms1656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015312076
133 https://doi.org/10.1038/ncomms1656
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/ncomms4003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049300751
136 https://doi.org/10.1038/ncomms4003
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nnano.2011.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042104562
139 https://doi.org/10.1038/nnano.2011.214
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nnano.2014.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028319231
142 https://doi.org/10.1038/nnano.2014.16
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nphys2286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031026930
145 https://doi.org/10.1038/nphys2286
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nphys2572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023255934
148 https://doi.org/10.1038/nphys2572
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/srep01757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040268093
151 https://doi.org/10.1038/srep01757
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/andp.201200181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022301714
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/pssb.2221690222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015731248
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/nl301035x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219360
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/nl3019802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006189331
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.4754108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058060074
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.4772547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046747045
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1088/0953-8984/15/20/204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050275016
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevb.57.14698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587608
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevb.81.115407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047654023
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevb.81.205407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025890661
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.82.245107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036794072
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.83.035309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041379598
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.86.205133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009063499
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.88.075144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011243524
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.88.195132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040801862
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.104.116401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000772801
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.105.076802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757339
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.105.176602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000736621
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.107.077401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024120841
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.107.207602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000153165
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.109.127401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049664164
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.111.136802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029841302
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.59.1962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795780
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.98.106803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003001378
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/revmodphys.82.3045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004083979
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/revmodphys.83.1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045115933
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/jqe.1983.1071904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061304567
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1126/science.1173034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009232583
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.452665.6 schema:alternateName Nanosystems Initiative Munich
210 schema:name Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München, Germany
211 Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
214 schema:name Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...