Ultrafast helicity control of surface currents in topological insulators with near-unity fidelity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-03-26

AUTHORS

Christoph Kastl, Christoph Karnetzky, Helmut Karl, Alexander W. Holleitner

ABSTRACT

In recent years, a class of solid-state materials, called three-dimensional topological insulators, has emerged. In the bulk, a topological insulator behaves like an ordinary insulator with a band gap. At the surface, conducting gapless states exist showing remarkable properties such as helical Dirac dispersion and suppression of backscattering of spin-polarized charge carriers. The characterization and control of the surface states via transport experiments is often hindered by residual bulk contributions. Here we show that surface currents in Bi2Se3 can be controlled by circularly polarized light on a picosecond timescale with a fidelity near unity even at room temperature. We reveal the temporal separation of such ultrafast helicity-dependent surface currents from photo-induced thermoelectric and drift currents in the bulk. Our results uncover the functionality of ultrafast optoelectronic devices based on surface currents in topological insulators. More... »

PAGES

6617

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms7617

DOI

http://dx.doi.org/10.1038/ncomms7617

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009696797

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25808213


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.452665.6", 
          "name": [
            "Walter Schottky Institut and Physik-Department, Technische Universit\u00e4t M\u00fcnchen, Am Coulombwall 4a, 85748 Garching, Germany", 
            "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kastl", 
        "givenName": "Christoph", 
        "id": "sg:person.010417556703.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010417556703.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.452665.6", 
          "name": [
            "Walter Schottky Institut and Physik-Department, Technische Universit\u00e4t M\u00fcnchen, Am Coulombwall 4a, 85748 Garching, Germany", 
            "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karnetzky", 
        "givenName": "Christoph", 
        "id": "sg:person.012131273657.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131273657.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, University of Augsburg, 86135 Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institute of Physics, University of Augsburg, 86135 Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karl", 
        "givenName": "Helmut", 
        "id": "sg:person.01232553200.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232553200.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.452665.6", 
          "name": [
            "Walter Schottky Institut and Physik-Department, Technische Universit\u00e4t M\u00fcnchen, Am Coulombwall 4a, 85748 Garching, Germany", 
            "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holleitner", 
        "givenName": "Alexander W.", 
        "id": "sg:person.0711543207.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711543207.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys2286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031026930", 
          "https://doi.org/10.1038/nphys2286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003672267", 
          "https://doi.org/10.1038/nature09189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049300751", 
          "https://doi.org/10.1038/ncomms4003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042104562", 
          "https://doi.org/10.1038/nnano.2011.214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023255934", 
          "https://doi.org/10.1038/nphys2572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040268093", 
          "https://doi.org/10.1038/srep01757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028319231", 
          "https://doi.org/10.1038/nnano.2014.16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047390349", 
          "https://doi.org/10.1038/nature08234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015312076", 
          "https://doi.org/10.1038/ncomms1656"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03-26", 
    "datePublishedReg": "2015-03-26", 
    "description": "In recent years, a class of solid-state materials, called three-dimensional topological insulators, has emerged. In the bulk, a topological insulator behaves like an ordinary insulator with a band gap. At the surface, conducting gapless states exist showing remarkable properties such as helical Dirac dispersion and suppression of backscattering of spin-polarized charge carriers. The characterization and control of the surface states via transport experiments is often hindered by residual bulk contributions. Here we show that surface currents in Bi2Se3 can be controlled by circularly polarized light on a picosecond timescale with a fidelity near unity even at room temperature. We reveal the temporal separation of such ultrafast helicity-dependent surface currents from photo-induced thermoelectric and drift currents in the bulk. Our results uncover the functionality of ultrafast optoelectronic devices based on surface currents in topological insulators. ", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms7617", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3799276", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "topological insulators", 
      "three-dimensional topological insulators", 
      "near-unity fidelity", 
      "suppression of backscattering", 
      "spin-polarized charge carriers", 
      "ultrafast optoelectronic devices", 
      "solid-state materials", 
      "ordinary insulator", 
      "Dirac dispersion", 
      "surface currents", 
      "picosecond timescale", 
      "gapless state", 
      "optoelectronic devices", 
      "band gap", 
      "surface states", 
      "bulk contribution", 
      "insulator", 
      "drift current", 
      "charge carriers", 
      "transport experiments", 
      "room temperature", 
      "helicity control", 
      "remarkable properties", 
      "current", 
      "Bi2Se3", 
      "backscattering", 
      "bulk", 
      "temporal separation", 
      "state", 
      "dispersion", 
      "fidelity", 
      "timescales", 
      "light", 
      "thermoelectrics", 
      "devices", 
      "gap", 
      "surface", 
      "temperature", 
      "properties", 
      "carriers", 
      "materials", 
      "experiments", 
      "unity", 
      "characterization", 
      "contribution", 
      "separation", 
      "recent years", 
      "functionality", 
      "control", 
      "suppression", 
      "results", 
      "class", 
      "years", 
      "helical Dirac dispersion", 
      "residual bulk contributions", 
      "such ultrafast helicity-dependent surface currents", 
      "ultrafast helicity-dependent surface currents", 
      "helicity-dependent surface currents", 
      "photo-induced thermoelectric", 
      "Ultrafast helicity control"
    ], 
    "name": "Ultrafast helicity control of surface currents in topological insulators with near-unity fidelity", 
    "pagination": "6617", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009696797"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms7617"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25808213"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms7617", 
      "https://app.dimensions.ai/details/publication/pub.1009696797"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_679.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms7617"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms7617'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms7617'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms7617'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms7617'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      95 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms7617 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8ecf254b482545f08e4f0c16473790c1
4 schema:citation sg:pub.10.1038/nature08234
5 sg:pub.10.1038/nature09189
6 sg:pub.10.1038/ncomms1656
7 sg:pub.10.1038/ncomms4003
8 sg:pub.10.1038/nnano.2011.214
9 sg:pub.10.1038/nnano.2014.16
10 sg:pub.10.1038/nphys2286
11 sg:pub.10.1038/nphys2572
12 sg:pub.10.1038/srep01757
13 schema:datePublished 2015-03-26
14 schema:datePublishedReg 2015-03-26
15 schema:description In recent years, a class of solid-state materials, called three-dimensional topological insulators, has emerged. In the bulk, a topological insulator behaves like an ordinary insulator with a band gap. At the surface, conducting gapless states exist showing remarkable properties such as helical Dirac dispersion and suppression of backscattering of spin-polarized charge carriers. The characterization and control of the surface states via transport experiments is often hindered by residual bulk contributions. Here we show that surface currents in Bi2Se3 can be controlled by circularly polarized light on a picosecond timescale with a fidelity near unity even at room temperature. We reveal the temporal separation of such ultrafast helicity-dependent surface currents from photo-induced thermoelectric and drift currents in the bulk. Our results uncover the functionality of ultrafast optoelectronic devices based on surface currents in topological insulators.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N87c7f316b00b4ee99fbd7efcd90e2d5c
20 N8bda0735141c4cfdb73ed0b5705aef3f
21 sg:journal.1043282
22 schema:keywords Bi2Se3
23 Dirac dispersion
24 Ultrafast helicity control
25 backscattering
26 band gap
27 bulk
28 bulk contribution
29 carriers
30 characterization
31 charge carriers
32 class
33 contribution
34 control
35 current
36 devices
37 dispersion
38 drift current
39 experiments
40 fidelity
41 functionality
42 gap
43 gapless state
44 helical Dirac dispersion
45 helicity control
46 helicity-dependent surface currents
47 insulator
48 light
49 materials
50 near-unity fidelity
51 optoelectronic devices
52 ordinary insulator
53 photo-induced thermoelectric
54 picosecond timescale
55 properties
56 recent years
57 remarkable properties
58 residual bulk contributions
59 results
60 room temperature
61 separation
62 solid-state materials
63 spin-polarized charge carriers
64 state
65 such ultrafast helicity-dependent surface currents
66 suppression
67 suppression of backscattering
68 surface
69 surface currents
70 surface states
71 temperature
72 temporal separation
73 thermoelectrics
74 three-dimensional topological insulators
75 timescales
76 topological insulators
77 transport experiments
78 ultrafast helicity-dependent surface currents
79 ultrafast optoelectronic devices
80 unity
81 years
82 schema:name Ultrafast helicity control of surface currents in topological insulators with near-unity fidelity
83 schema:pagination 6617
84 schema:productId N1d4e340e45f048d586f20de4b0a07414
85 Nde12d485af484d3e9e58ad6b919ac183
86 Nfcf41cc4b33b424bbc9dcec5bc446b6a
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009696797
88 https://doi.org/10.1038/ncomms7617
89 schema:sdDatePublished 2021-11-01T18:25
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nb527075898d746ba96bfc233b2278bdf
92 schema:url https://doi.org/10.1038/ncomms7617
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N1698fc6d42d049578205fb426e11c5ce rdf:first sg:person.012131273657.78
97 rdf:rest N9cd88c86500c408da4f9d932fde11e9f
98 N1d4e340e45f048d586f20de4b0a07414 schema:name pubmed_id
99 schema:value 25808213
100 rdf:type schema:PropertyValue
101 N87c7f316b00b4ee99fbd7efcd90e2d5c schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 N8bda0735141c4cfdb73ed0b5705aef3f schema:volumeNumber 6
104 rdf:type schema:PublicationVolume
105 N8ecf254b482545f08e4f0c16473790c1 rdf:first sg:person.010417556703.85
106 rdf:rest N1698fc6d42d049578205fb426e11c5ce
107 N9cd88c86500c408da4f9d932fde11e9f rdf:first sg:person.01232553200.78
108 rdf:rest Nb1a0766c8533424e837138f6835dbe77
109 Nb1a0766c8533424e837138f6835dbe77 rdf:first sg:person.0711543207.84
110 rdf:rest rdf:nil
111 Nb527075898d746ba96bfc233b2278bdf schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 Nde12d485af484d3e9e58ad6b919ac183 schema:name dimensions_id
114 schema:value pub.1009696797
115 rdf:type schema:PropertyValue
116 Nfcf41cc4b33b424bbc9dcec5bc446b6a schema:name doi
117 schema:value 10.1038/ncomms7617
118 rdf:type schema:PropertyValue
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
123 schema:name Materials Engineering
124 rdf:type schema:DefinedTerm
125 sg:grant.3799276 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms7617
126 rdf:type schema:MonetaryGrant
127 sg:journal.1043282 schema:issn 2041-1723
128 schema:name Nature Communications
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.010417556703.85 schema:affiliation grid-institutes:grid.452665.6
132 schema:familyName Kastl
133 schema:givenName Christoph
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010417556703.85
135 rdf:type schema:Person
136 sg:person.012131273657.78 schema:affiliation grid-institutes:grid.452665.6
137 schema:familyName Karnetzky
138 schema:givenName Christoph
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131273657.78
140 rdf:type schema:Person
141 sg:person.01232553200.78 schema:affiliation grid-institutes:grid.7307.3
142 schema:familyName Karl
143 schema:givenName Helmut
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232553200.78
145 rdf:type schema:Person
146 sg:person.0711543207.84 schema:affiliation grid-institutes:grid.452665.6
147 schema:familyName Holleitner
148 schema:givenName Alexander W.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711543207.84
150 rdf:type schema:Person
151 sg:pub.10.1038/nature08234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047390349
152 https://doi.org/10.1038/nature08234
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nature09189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003672267
155 https://doi.org/10.1038/nature09189
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/ncomms1656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015312076
158 https://doi.org/10.1038/ncomms1656
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ncomms4003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049300751
161 https://doi.org/10.1038/ncomms4003
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nnano.2011.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042104562
164 https://doi.org/10.1038/nnano.2011.214
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nnano.2014.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028319231
167 https://doi.org/10.1038/nnano.2014.16
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nphys2286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031026930
170 https://doi.org/10.1038/nphys2286
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphys2572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023255934
173 https://doi.org/10.1038/nphys2572
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/srep01757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040268093
176 https://doi.org/10.1038/srep01757
177 rdf:type schema:CreativeWork
178 grid-institutes:grid.452665.6 schema:alternateName Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München, Germany
179 schema:name Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München, Germany
180 Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
181 rdf:type schema:Organization
182 grid-institutes:grid.7307.3 schema:alternateName Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
183 schema:name Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...