Partially coherent ultrafast spectrography View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

C Bourassin-Bouchet, M-E Couprie

ABSTRACT

Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter. More... »

PAGES

6465

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms7465

DOI

http://dx.doi.org/10.1038/ncomms7465

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036467782

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25744080


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "1] Synchrotron SOLEIL, Saint Aubin, BP 34, 91 192 Gif-sur-Yvette, France [2] Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Univ Paris Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bourassin-Bouchet", 
        "givenName": "C", 
        "id": "sg:person.0653515063.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653515063.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soleil Synchrotron", 
          "id": "https://www.grid.ac/institutes/grid.426328.9", 
          "name": [
            "Synchrotron SOLEIL, Saint Aubin, BP 34, 91 192 Gif-sur-Yvette, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Couprie", 
        "givenName": "M-E", 
        "id": "sg:person.01331001044.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331001044.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature11806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000015894", 
          "https://doi.org/10.1038/nature11806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340412331307942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001084938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(99)00114-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001543010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.22.012869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001775042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006532067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009137655", 
          "https://doi.org/10.1038/nphoton.2009.160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009137655", 
          "https://doi.org/10.1038/nphoton.2009.160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(84)90105-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009828661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(84)90105-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009828661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/aop.1.000308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013474600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/aop.1.000308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013474600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015027056", 
          "https://doi.org/10.1038/nphoton.2013.75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1157846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020917506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022852642", 
          "https://doi.org/10.1038/nphoton.2012.233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/425/7/072001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025414100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029960962", 
          "https://doi.org/10.1038/nphys2525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/42/13/134007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031330534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032741517", 
          "https://doi.org/10.1038/nature12539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033566360", 
          "https://doi.org/10.1038/nphoton.2010.176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/13/9/093024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035317636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/24329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042473510", 
          "https://doi.org/10.1038/24329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/24329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042473510", 
          "https://doi.org/10.1038/24329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043406781", 
          "https://doi.org/10.1038/nphoton.2012.276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043762538", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043762538", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045432022", 
          "https://doi.org/10.1038/nature06402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047342016", 
          "https://doi.org/10.1038/nphoton.2013.11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35107000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049320028", 
          "https://doi.org/10.1038/35107000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35107000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049320028", 
          "https://doi.org/10.1038/35107000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.053003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051958026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.053003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051958026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.113901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053637172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.113901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053637172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1148286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057676637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2716360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057859699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/8/083019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059135142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/8/083019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059135142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.61.063801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.61.063801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.011401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.011401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.074801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.074801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.243902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.243902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.29.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.29.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1059413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1090277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1122858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1189401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1189401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5359.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062560081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.2127113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064141617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.2127113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064141617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.14.000935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065168480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.017678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065191477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.017678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065191477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.002506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065202648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.006783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065203128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.18.002041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065214796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.27.001315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065220487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.36.000621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065229769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.37.002874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065232299"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms7465", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3791533", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Partially coherent ultrafast spectrography", 
    "pagination": "6465", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "adb7e4ff7d473cdc70369738e5535cdab25a5ad7c97555ba4d93f25e8ad4f8aa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25744080"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms7465"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036467782"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms7465", 
      "https://app.dimensions.ai/details/publication/pub.1036467782"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms7465"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms7465'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms7465'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms7465'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms7465'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      79 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms7465 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N6ddf12ab0296499b80a5c8405088d76b
4 schema:citation sg:pub.10.1038/24329
5 sg:pub.10.1038/35107000
6 sg:pub.10.1038/nature06402
7 sg:pub.10.1038/nature11806
8 sg:pub.10.1038/nature12539
9 sg:pub.10.1038/nphoton.2009.160
10 sg:pub.10.1038/nphoton.2010.176
11 sg:pub.10.1038/nphoton.2012.233
12 sg:pub.10.1038/nphoton.2012.276
13 sg:pub.10.1038/nphoton.2013.11
14 sg:pub.10.1038/nphoton.2013.75
15 sg:pub.10.1038/nphys2525
16 https://app.dimensions.ai/details/publication/pub.1043762538
17 https://doi.org/10.1016/0030-4018(84)90105-6
18 https://doi.org/10.1016/s0168-9002(99)00114-x
19 https://doi.org/10.1063/1.1148286
20 https://doi.org/10.1063/1.2716360
21 https://doi.org/10.1080/09500340412331307942
22 https://doi.org/10.1088/0953-4075/42/13/134007
23 https://doi.org/10.1088/1367-2630/12/8/083019
24 https://doi.org/10.1088/1367-2630/13/9/093024
25 https://doi.org/10.1088/1742-6596/425/7/072001
26 https://doi.org/10.1103/physreva.61.063801
27 https://doi.org/10.1103/physreva.71.011401
28 https://doi.org/10.1103/physrevlett.102.074801
29 https://doi.org/10.1103/physrevlett.103.243902
30 https://doi.org/10.1103/physrevlett.106.053003
31 https://doi.org/10.1103/physrevlett.112.113901
32 https://doi.org/10.1103/physrevlett.70.1244
33 https://doi.org/10.1103/physrevlett.74.3776
34 https://doi.org/10.1103/revmodphys.29.74
35 https://doi.org/10.1103/revmodphys.78.1135
36 https://doi.org/10.1126/science.1059413
37 https://doi.org/10.1126/science.1090277
38 https://doi.org/10.1126/science.1122858
39 https://doi.org/10.1126/science.1157846
40 https://doi.org/10.1126/science.1158573
41 https://doi.org/10.1126/science.1189401
42 https://doi.org/10.1126/science.279.5359.2089
43 https://doi.org/10.1190/1.2127113
44 https://doi.org/10.1364/aop.1.000308
45 https://doi.org/10.1364/josab.14.000935
46 https://doi.org/10.1364/oe.17.017678
47 https://doi.org/10.1364/oe.21.002506
48 https://doi.org/10.1364/oe.21.006783
49 https://doi.org/10.1364/oe.22.012869
50 https://doi.org/10.1364/ol.18.002041
51 https://doi.org/10.1364/ol.27.001315
52 https://doi.org/10.1364/ol.36.000621
53 https://doi.org/10.1364/ol.37.002874
54 schema:datePublished 2015-12
55 schema:datePublishedReg 2015-12-01
56 schema:description Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N360b3749e8dc4b21a3ad46fdf99ab47a
61 N47e9adc620684c018309fd4fd64c4331
62 sg:journal.1043282
63 schema:name Partially coherent ultrafast spectrography
64 schema:pagination 6465
65 schema:productId N4aaaa78944424e71961b0eba0b164953
66 N8d8c843898c44591987db5c2f3a2cf77
67 N901051c1a506490bb4f5864f3d63173b
68 N91e1604fee324cde98041599bb02ed45
69 Na454a1e3539345feb7c72b55e1f16911
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036467782
71 https://doi.org/10.1038/ncomms7465
72 schema:sdDatePublished 2019-04-10T18:09
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N83b01b0f8d9e4c1f8e1714741ccbc22a
75 schema:url https://www.nature.com/articles/ncomms7465
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N25dfcdebc16a4a3c90756d39fd46b82d rdf:first sg:person.01331001044.05
80 rdf:rest rdf:nil
81 N360b3749e8dc4b21a3ad46fdf99ab47a schema:volumeNumber 6
82 rdf:type schema:PublicationVolume
83 N438f6c905f154b82b994dedc80bcac71 schema:name 1] Synchrotron SOLEIL, Saint Aubin, BP 34, 91 192 Gif-sur-Yvette, France [2] Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Univ Paris Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France.
84 rdf:type schema:Organization
85 N47e9adc620684c018309fd4fd64c4331 schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 N4aaaa78944424e71961b0eba0b164953 schema:name doi
88 schema:value 10.1038/ncomms7465
89 rdf:type schema:PropertyValue
90 N6ddf12ab0296499b80a5c8405088d76b rdf:first sg:person.0653515063.59
91 rdf:rest N25dfcdebc16a4a3c90756d39fd46b82d
92 N83b01b0f8d9e4c1f8e1714741ccbc22a schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N8d8c843898c44591987db5c2f3a2cf77 schema:name nlm_unique_id
95 schema:value 101528555
96 rdf:type schema:PropertyValue
97 N901051c1a506490bb4f5864f3d63173b schema:name readcube_id
98 schema:value adb7e4ff7d473cdc70369738e5535cdab25a5ad7c97555ba4d93f25e8ad4f8aa
99 rdf:type schema:PropertyValue
100 N91e1604fee324cde98041599bb02ed45 schema:name pubmed_id
101 schema:value 25744080
102 rdf:type schema:PropertyValue
103 Na454a1e3539345feb7c72b55e1f16911 schema:name dimensions_id
104 schema:value pub.1036467782
105 rdf:type schema:PropertyValue
106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
110 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
111 rdf:type schema:DefinedTerm
112 sg:grant.3791533 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms7465
113 rdf:type schema:MonetaryGrant
114 sg:journal.1043282 schema:issn 2041-1723
115 schema:name Nature Communications
116 rdf:type schema:Periodical
117 sg:person.01331001044.05 schema:affiliation https://www.grid.ac/institutes/grid.426328.9
118 schema:familyName Couprie
119 schema:givenName M-E
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331001044.05
121 rdf:type schema:Person
122 sg:person.0653515063.59 schema:affiliation N438f6c905f154b82b994dedc80bcac71
123 schema:familyName Bourassin-Bouchet
124 schema:givenName C
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653515063.59
126 rdf:type schema:Person
127 sg:pub.10.1038/24329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042473510
128 https://doi.org/10.1038/24329
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/35107000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049320028
131 https://doi.org/10.1038/35107000
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature06402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045432022
134 https://doi.org/10.1038/nature06402
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature11806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000015894
137 https://doi.org/10.1038/nature11806
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature12539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032741517
140 https://doi.org/10.1038/nature12539
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nphoton.2009.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009137655
143 https://doi.org/10.1038/nphoton.2009.160
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nphoton.2010.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033566360
146 https://doi.org/10.1038/nphoton.2010.176
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nphoton.2012.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022852642
149 https://doi.org/10.1038/nphoton.2012.233
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nphoton.2012.276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043406781
152 https://doi.org/10.1038/nphoton.2012.276
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nphoton.2013.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047342016
155 https://doi.org/10.1038/nphoton.2013.11
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nphoton.2013.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015027056
158 https://doi.org/10.1038/nphoton.2013.75
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nphys2525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029960962
161 https://doi.org/10.1038/nphys2525
162 rdf:type schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1043762538 schema:CreativeWork
164 https://doi.org/10.1016/0030-4018(84)90105-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009828661
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0168-9002(99)00114-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001543010
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.1148286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057676637
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.2716360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057859699
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1080/09500340412331307942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001084938
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0953-4075/42/13/134007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031330534
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/1367-2630/12/8/083019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059135142
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/1367-2630/13/9/093024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035317636
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1088/1742-6596/425/7/072001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025414100
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physreva.61.063801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496289
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physreva.71.011401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060500827
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.102.074801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754831
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.103.243902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756342
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.106.053003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051958026
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.112.113901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053637172
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.70.1244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806377
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.74.3776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810980
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/revmodphys.29.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837654
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/revmodphys.78.1135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839606
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.1059413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444507
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.1090277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448986
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.1122858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453406
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1157846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020917506
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.1158573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006532067
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1189401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461785
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.279.5359.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062560081
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1190/1.2127113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064141617
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1364/aop.1.000308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013474600
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1364/josab.14.000935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065168480
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1364/oe.17.017678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065191477
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1364/oe.21.002506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065202648
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1364/oe.21.006783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065203128
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1364/oe.22.012869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001775042
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1364/ol.18.002041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065214796
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1364/ol.27.001315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220487
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1364/ol.36.000621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065229769
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1364/ol.37.002874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065232299
237 rdf:type schema:CreativeWork
238 https://www.grid.ac/institutes/grid.426328.9 schema:alternateName Soleil Synchrotron
239 schema:name Synchrotron SOLEIL, Saint Aubin, BP 34, 91 192 Gif-sur-Yvette, France.
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...