Climate variation explains a third of global crop yield variability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-01-22

AUTHORS

Deepak K. Ray, James S. Gerber, Graham K. MacDonald, Paul C. West

ABSTRACT

Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability. More... »

PAGES

5989

References to SciGraph publications

  • 2012-03-07. Projected temperature changes indicate significant increase in interannual variability of U.S. maize yields in CLIMATIC CHANGE
  • 2013-09-01. Crop pests and pathogens move polewards in a warming world in NATURE CLIMATE CHANGE
  • 2012-06-21. Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003 in CLIMATIC CHANGE
  • 2013-07-21. Prediction of seasonal climate-induced variations in global food production in NATURE CLIMATE CHANGE
  • 2010-09-24. Irrigation as adaptation strategy to climate change—a biophysical and economic appraisal for Swiss maize production in CLIMATIC CHANGE
  • 1994-07. Forecasting Zimbabwean maize yield using eastern equatorial Pacific sea surface temperature in NATURE
  • 2011-10-12. Solutions for a cultivated planet in NATURE
  • 2005-05. Impacts of Present and Future Climate Variability on Agriculture and Forestry in the Temperate Regions: Europe in CLIMATIC CHANGE
  • 2012-11-18. Adaptation of US maize to temperature variations in NATURE CLIMATE CHANGE
  • 2012-05-23. Climatic impacts on crop yield and its variability in Nepal: do they vary across seasons and altitudes? in CLIMATIC CHANGE
  • 2013-03-03. The critical role of extreme heat for maize production in the United States in NATURE CLIMATE CHANGE
  • 2013-06-09. Uncertainty in simulating wheat yields under climate change in NATURE CLIMATE CHANGE
  • 2012-01-29. Extreme heat effects on wheat senescence in India in NATURE CLIMATE CHANGE
  • 2012-01. Recent patterns of crop yield growth and stagnation in NATURE COMMUNICATIONS
  • 2013-05-01. Rural livelihoods and climate variability in Ningxia, Northwest China in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms6989

    DOI

    http://dx.doi.org/10.1038/ncomms6989

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010392333

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25609225


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Agriculture", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Climate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Climate Change", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crops, Agricultural", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environmental Monitoring", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Geography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oryza", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Triticum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Zea mays", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ray", 
            "givenName": "Deepak K.", 
            "id": "sg:person.01124627140.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124627140.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gerber", 
            "givenName": "James S.", 
            "id": "sg:person.0642342216.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642342216.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "MacDonald", 
            "givenName": "Graham K.", 
            "id": "sg:person.01335223172.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335223172.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "West", 
            "givenName": "Paul C.", 
            "id": "sg:person.01141132416.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141132416.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nclimate1945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036697184", 
              "https://doi.org/10.1038/nclimate1945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030001801", 
              "https://doi.org/10.1038/nclimate1356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0491-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010419905", 
              "https://doi.org/10.1007/s10584-012-0491-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0428-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002370482", 
              "https://doi.org/10.1007/s10584-012-0428-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-010-9931-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002744884", 
              "https://doi.org/10.1007/s10584-010-9931-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030445199", 
              "https://doi.org/10.1038/nclimate1990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022202325", 
              "https://doi.org/10.1038/nclimate1585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017341934", 
              "https://doi.org/10.1038/nclimate1916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045642720", 
              "https://doi.org/10.1038/ncomms2296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-0765-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041869494", 
              "https://doi.org/10.1007/s10584-013-0765-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/370204a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026802797", 
              "https://doi.org/10.1038/370204a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011317676", 
              "https://doi.org/10.1038/nclimate1832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025472352", 
              "https://doi.org/10.1038/nature10452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-005-5939-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043330986", 
              "https://doi.org/10.1007/s10584-005-5939-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0509-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014518726", 
              "https://doi.org/10.1007/s10584-012-0509-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-01-22", 
        "datePublishedReg": "2015-01-22", 
        "description": "Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32\u201339%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms6989", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8698129", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4178317", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "climate variability", 
          "crop yield variability", 
          "climate variations", 
          "yield variability", 
          "global crop yield variability", 
          "recent climate variability", 
          "mean climate change", 
          "inter-annual climate variations", 
          "observed yield variability", 
          "future crop production", 
          "variability accounts", 
          "global breadbaskets", 
          "climate change", 
          "spatial patterns", 
          "time series", 
          "substantial areas", 
          "variability", 
          "observed variation", 
          "crop yield", 
          "soybean crop yield", 
          "variation", 
          "crop production", 
          "key drivers", 
          "precipitation", 
          "different regions", 
          "area", 
          "breadbasket", 
          "significant influence", 
          "region", 
          "agriculture", 
          "drivers", 
          "influence", 
          "temperature", 
          "patterns", 
          "changes", 
          "series", 
          "units", 
          "understanding", 
          "relationship", 
          "study", 
          "production", 
          "yield", 
          "account", 
          "third", 
          "political units", 
          "interaction", 
          "role", 
          "maize", 
          "further research", 
          "policy interventions", 
          "wheat", 
          "research", 
          "rice", 
          "intervention"
        ], 
        "name": "Climate variation explains a third of global crop yield variability", 
        "pagination": "5989", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010392333"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms6989"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25609225"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms6989", 
          "https://app.dimensions.ai/details/publication/pub.1010392333"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_678.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms6989"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms6989'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms6989'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms6989'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms6989'


     

    This table displays all metadata directly associated to this object as RDF triples.

    243 TRIPLES      21 PREDICATES      105 URIs      82 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms6989 schema:about N4916a275cb8749dea021274ccee52cbc
    2 N58c2bfab8a674fd998584b706b25189a
    3 N6e95d176278747338ad27094ed5012ae
    4 N72f7e1b6cedc4d30b9682586f2d07448
    5 N77da2b199910400bafac0593fabc9e01
    6 N7a50b44a7feb4c859f31c993d2bffb03
    7 N98f31780f1cb434facbec9899a392ba6
    8 Nece1823e51aa4cbda4a18212338aa97c
    9 Nedb0e677e5854e318495356d8ade5f35
    10 Nf2d03d9939494f27b82ade70c7dc96bd
    11 Nf50c698008484df49c4b4a4e30a5da77
    12 anzsrc-for:06
    13 anzsrc-for:0607
    14 schema:author N843c3c83491c4bf0a2e4538a1c8dc986
    15 schema:citation sg:pub.10.1007/s10584-005-5939-7
    16 sg:pub.10.1007/s10584-010-9931-5
    17 sg:pub.10.1007/s10584-012-0428-2
    18 sg:pub.10.1007/s10584-012-0491-8
    19 sg:pub.10.1007/s10584-012-0509-2
    20 sg:pub.10.1007/s10584-013-0765-9
    21 sg:pub.10.1038/370204a0
    22 sg:pub.10.1038/nature10452
    23 sg:pub.10.1038/nclimate1356
    24 sg:pub.10.1038/nclimate1585
    25 sg:pub.10.1038/nclimate1832
    26 sg:pub.10.1038/nclimate1916
    27 sg:pub.10.1038/nclimate1945
    28 sg:pub.10.1038/nclimate1990
    29 sg:pub.10.1038/ncomms2296
    30 schema:datePublished 2015-01-22
    31 schema:datePublishedReg 2015-01-22
    32 schema:description Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.
    33 schema:genre article
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N156aa9d4c65f49479ca1aea633e27eaf
    36 N86cb8fc553d345c5ab53a15ebbb860c7
    37 sg:journal.1043282
    38 schema:keywords account
    39 agriculture
    40 area
    41 breadbasket
    42 changes
    43 climate change
    44 climate variability
    45 climate variations
    46 crop production
    47 crop yield
    48 crop yield variability
    49 different regions
    50 drivers
    51 further research
    52 future crop production
    53 global breadbaskets
    54 global crop yield variability
    55 influence
    56 inter-annual climate variations
    57 interaction
    58 intervention
    59 key drivers
    60 maize
    61 mean climate change
    62 observed variation
    63 observed yield variability
    64 patterns
    65 policy interventions
    66 political units
    67 precipitation
    68 production
    69 recent climate variability
    70 region
    71 relationship
    72 research
    73 rice
    74 role
    75 series
    76 significant influence
    77 soybean crop yield
    78 spatial patterns
    79 study
    80 substantial areas
    81 temperature
    82 third
    83 time series
    84 understanding
    85 units
    86 variability
    87 variability accounts
    88 variation
    89 wheat
    90 yield
    91 yield variability
    92 schema:name Climate variation explains a third of global crop yield variability
    93 schema:pagination 5989
    94 schema:productId N867c4553199241e89fef7c3a686f0572
    95 N874b0f94fe6f423ca471f986a1213a2e
    96 Ne9c55ce5d929406e88c03785ec695fd6
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010392333
    98 https://doi.org/10.1038/ncomms6989
    99 schema:sdDatePublished 2022-08-04T17:04
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N349f4f4e24c74fbfa7d7f79c314177cc
    102 schema:url https://doi.org/10.1038/ncomms6989
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N0d65a7d4516a425594795d46f0eb55a1 rdf:first sg:person.01141132416.30
    107 rdf:rest rdf:nil
    108 N156aa9d4c65f49479ca1aea633e27eaf schema:issueNumber 1
    109 rdf:type schema:PublicationIssue
    110 N280b3daf0cc9491fbd28a8daeb23178d rdf:first sg:person.0642342216.39
    111 rdf:rest Ndb7491f69a2a498487357bbd0ca37391
    112 N349f4f4e24c74fbfa7d7f79c314177cc schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 N4916a275cb8749dea021274ccee52cbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Climate
    116 rdf:type schema:DefinedTerm
    117 N58c2bfab8a674fd998584b706b25189a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Crops, Agricultural
    119 rdf:type schema:DefinedTerm
    120 N6e95d176278747338ad27094ed5012ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Zea mays
    122 rdf:type schema:DefinedTerm
    123 N72f7e1b6cedc4d30b9682586f2d07448 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Triticum
    125 rdf:type schema:DefinedTerm
    126 N77da2b199910400bafac0593fabc9e01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Models, Statistical
    128 rdf:type schema:DefinedTerm
    129 N7a50b44a7feb4c859f31c993d2bffb03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Agriculture
    131 rdf:type schema:DefinedTerm
    132 N843c3c83491c4bf0a2e4538a1c8dc986 rdf:first sg:person.01124627140.25
    133 rdf:rest N280b3daf0cc9491fbd28a8daeb23178d
    134 N867c4553199241e89fef7c3a686f0572 schema:name pubmed_id
    135 schema:value 25609225
    136 rdf:type schema:PropertyValue
    137 N86cb8fc553d345c5ab53a15ebbb860c7 schema:volumeNumber 6
    138 rdf:type schema:PublicationVolume
    139 N874b0f94fe6f423ca471f986a1213a2e schema:name doi
    140 schema:value 10.1038/ncomms6989
    141 rdf:type schema:PropertyValue
    142 N98f31780f1cb434facbec9899a392ba6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Geography
    144 rdf:type schema:DefinedTerm
    145 Ndb7491f69a2a498487357bbd0ca37391 rdf:first sg:person.01335223172.70
    146 rdf:rest N0d65a7d4516a425594795d46f0eb55a1
    147 Ne9c55ce5d929406e88c03785ec695fd6 schema:name dimensions_id
    148 schema:value pub.1010392333
    149 rdf:type schema:PropertyValue
    150 Nece1823e51aa4cbda4a18212338aa97c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Oryza
    152 rdf:type schema:DefinedTerm
    153 Nedb0e677e5854e318495356d8ade5f35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Climate Change
    155 rdf:type schema:DefinedTerm
    156 Nf2d03d9939494f27b82ade70c7dc96bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Environmental Monitoring
    158 rdf:type schema:DefinedTerm
    159 Nf50c698008484df49c4b4a4e30a5da77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Temperature
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Biological Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Plant Biology
    167 rdf:type schema:DefinedTerm
    168 sg:grant.4178317 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms6989
    169 rdf:type schema:MonetaryGrant
    170 sg:grant.8698129 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms6989
    171 rdf:type schema:MonetaryGrant
    172 sg:journal.1043282 schema:issn 2041-1723
    173 schema:name Nature Communications
    174 schema:publisher Springer Nature
    175 rdf:type schema:Periodical
    176 sg:person.01124627140.25 schema:affiliation grid-institutes:grid.17635.36
    177 schema:familyName Ray
    178 schema:givenName Deepak K.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124627140.25
    180 rdf:type schema:Person
    181 sg:person.01141132416.30 schema:affiliation grid-institutes:grid.17635.36
    182 schema:familyName West
    183 schema:givenName Paul C.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141132416.30
    185 rdf:type schema:Person
    186 sg:person.01335223172.70 schema:affiliation grid-institutes:grid.17635.36
    187 schema:familyName MacDonald
    188 schema:givenName Graham K.
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335223172.70
    190 rdf:type schema:Person
    191 sg:person.0642342216.39 schema:affiliation grid-institutes:grid.17635.36
    192 schema:familyName Gerber
    193 schema:givenName James S.
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642342216.39
    195 rdf:type schema:Person
    196 sg:pub.10.1007/s10584-005-5939-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043330986
    197 https://doi.org/10.1007/s10584-005-5939-7
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s10584-010-9931-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002744884
    200 https://doi.org/10.1007/s10584-010-9931-5
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s10584-012-0428-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002370482
    203 https://doi.org/10.1007/s10584-012-0428-2
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s10584-012-0491-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010419905
    206 https://doi.org/10.1007/s10584-012-0491-8
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s10584-012-0509-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014518726
    209 https://doi.org/10.1007/s10584-012-0509-2
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s10584-013-0765-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041869494
    212 https://doi.org/10.1007/s10584-013-0765-9
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/370204a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026802797
    215 https://doi.org/10.1038/370204a0
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nature10452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025472352
    218 https://doi.org/10.1038/nature10452
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nclimate1356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001801
    221 https://doi.org/10.1038/nclimate1356
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nclimate1585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022202325
    224 https://doi.org/10.1038/nclimate1585
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nclimate1832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011317676
    227 https://doi.org/10.1038/nclimate1832
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nclimate1916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017341934
    230 https://doi.org/10.1038/nclimate1916
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nclimate1945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036697184
    233 https://doi.org/10.1038/nclimate1945
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nclimate1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030445199
    236 https://doi.org/10.1038/nclimate1990
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/ncomms2296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045642720
    239 https://doi.org/10.1038/ncomms2296
    240 rdf:type schema:CreativeWork
    241 grid-institutes:grid.17635.36 schema:alternateName Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA
    242 schema:name Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA
    243 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...