Climate variation explains a third of global crop yield variability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-01-22

AUTHORS

Deepak K. Ray, James S. Gerber, Graham K. MacDonald, Paul C. West

ABSTRACT

Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability. More... »

PAGES

5989

References to SciGraph publications

  • 2012-03-07. Projected temperature changes indicate significant increase in interannual variability of U.S. maize yields in CLIMATIC CHANGE
  • 2013-09-01. Crop pests and pathogens move polewards in a warming world in NATURE CLIMATE CHANGE
  • 2012-06-21. Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003 in CLIMATIC CHANGE
  • 2013-07-21. Prediction of seasonal climate-induced variations in global food production in NATURE CLIMATE CHANGE
  • 2010-09-24. Irrigation as adaptation strategy to climate change—a biophysical and economic appraisal for Swiss maize production in CLIMATIC CHANGE
  • 1994-07. Forecasting Zimbabwean maize yield using eastern equatorial Pacific sea surface temperature in NATURE
  • 2011-10-12. Solutions for a cultivated planet in NATURE
  • 2005-05. Impacts of Present and Future Climate Variability on Agriculture and Forestry in the Temperate Regions: Europe in CLIMATIC CHANGE
  • 2012-11-18. Adaptation of US maize to temperature variations in NATURE CLIMATE CHANGE
  • 2012-05-23. Climatic impacts on crop yield and its variability in Nepal: do they vary across seasons and altitudes? in CLIMATIC CHANGE
  • 2013-03-03. The critical role of extreme heat for maize production in the United States in NATURE CLIMATE CHANGE
  • 2013-06-09. Uncertainty in simulating wheat yields under climate change in NATURE CLIMATE CHANGE
  • 2012-01-29. Extreme heat effects on wheat senescence in India in NATURE CLIMATE CHANGE
  • 2012-01. Recent patterns of crop yield growth and stagnation in NATURE COMMUNICATIONS
  • 2013-05-01. Rural livelihoods and climate variability in Ningxia, Northwest China in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms6989

    DOI

    http://dx.doi.org/10.1038/ncomms6989

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010392333

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25609225


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Agriculture", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Climate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Climate Change", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crops, Agricultural", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environmental Monitoring", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Geography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oryza", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Triticum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Zea mays", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ray", 
            "givenName": "Deepak K.", 
            "id": "sg:person.01124627140.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124627140.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gerber", 
            "givenName": "James S.", 
            "id": "sg:person.0642342216.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642342216.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "MacDonald", 
            "givenName": "Graham K.", 
            "id": "sg:person.01335223172.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335223172.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "West", 
            "givenName": "Paul C.", 
            "id": "sg:person.01141132416.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141132416.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nclimate1945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036697184", 
              "https://doi.org/10.1038/nclimate1945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030001801", 
              "https://doi.org/10.1038/nclimate1356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0491-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010419905", 
              "https://doi.org/10.1007/s10584-012-0491-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0428-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002370482", 
              "https://doi.org/10.1007/s10584-012-0428-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-010-9931-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002744884", 
              "https://doi.org/10.1007/s10584-010-9931-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030445199", 
              "https://doi.org/10.1038/nclimate1990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022202325", 
              "https://doi.org/10.1038/nclimate1585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017341934", 
              "https://doi.org/10.1038/nclimate1916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045642720", 
              "https://doi.org/10.1038/ncomms2296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-0765-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041869494", 
              "https://doi.org/10.1007/s10584-013-0765-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/370204a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026802797", 
              "https://doi.org/10.1038/370204a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011317676", 
              "https://doi.org/10.1038/nclimate1832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025472352", 
              "https://doi.org/10.1038/nature10452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-005-5939-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043330986", 
              "https://doi.org/10.1007/s10584-005-5939-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0509-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014518726", 
              "https://doi.org/10.1007/s10584-012-0509-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-01-22", 
        "datePublishedReg": "2015-01-22", 
        "description": "Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32\u201339%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms6989", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8698129", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4178317", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "climate variability", 
          "crop yield variability", 
          "climate variations", 
          "yield variability", 
          "global crop yield variability", 
          "recent climate variability", 
          "mean climate change", 
          "inter-annual climate variations", 
          "observed yield variability", 
          "future crop production", 
          "variability accounts", 
          "global breadbaskets", 
          "climate change", 
          "spatial patterns", 
          "time series", 
          "substantial areas", 
          "variability", 
          "observed variation", 
          "crop yield", 
          "soybean crop yield", 
          "variation", 
          "crop production", 
          "key drivers", 
          "precipitation", 
          "different regions", 
          "area", 
          "breadbasket", 
          "significant influence", 
          "region", 
          "agriculture", 
          "drivers", 
          "influence", 
          "temperature", 
          "patterns", 
          "changes", 
          "series", 
          "units", 
          "understanding", 
          "relationship", 
          "study", 
          "production", 
          "yield", 
          "account", 
          "third", 
          "political units", 
          "interaction", 
          "role", 
          "maize", 
          "further research", 
          "policy interventions", 
          "wheat", 
          "research", 
          "rice", 
          "intervention"
        ], 
        "name": "Climate variation explains a third of global crop yield variability", 
        "pagination": "5989", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010392333"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms6989"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25609225"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms6989", 
          "https://app.dimensions.ai/details/publication/pub.1010392333"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_678.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms6989"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms6989'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms6989'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms6989'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms6989'


     

    This table displays all metadata directly associated to this object as RDF triples.

    243 TRIPLES      21 PREDICATES      105 URIs      82 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms6989 schema:about N3a9b59f1fbe34ffe8ff33b060ce119f3
    2 N660dbc74fe0b4250873722bc20421eba
    3 N6cd9a9d032ad4f918aaaf873a1f943e3
    4 N820686dba99a4c40b5f5d5fea431b802
    5 N88167168c86741f2a094026b05b116ae
    6 N8b898e88e88240218b7e9227c2d1e08a
    7 N933bf7d2331a4c93985d1bfc37411bed
    8 Na43ae68805b54992b4688d52f6d06003
    9 Nb7e004923aa341189b8eb478fbbed3cf
    10 Nc0728315dbb8415d98d120acfc663c65
    11 Ncf20379ed6524a20935b706b88a7b47b
    12 anzsrc-for:06
    13 anzsrc-for:0607
    14 schema:author N3820c4fba9bb416b8af4fe7bbd1ead39
    15 schema:citation sg:pub.10.1007/s10584-005-5939-7
    16 sg:pub.10.1007/s10584-010-9931-5
    17 sg:pub.10.1007/s10584-012-0428-2
    18 sg:pub.10.1007/s10584-012-0491-8
    19 sg:pub.10.1007/s10584-012-0509-2
    20 sg:pub.10.1007/s10584-013-0765-9
    21 sg:pub.10.1038/370204a0
    22 sg:pub.10.1038/nature10452
    23 sg:pub.10.1038/nclimate1356
    24 sg:pub.10.1038/nclimate1585
    25 sg:pub.10.1038/nclimate1832
    26 sg:pub.10.1038/nclimate1916
    27 sg:pub.10.1038/nclimate1945
    28 sg:pub.10.1038/nclimate1990
    29 sg:pub.10.1038/ncomms2296
    30 schema:datePublished 2015-01-22
    31 schema:datePublishedReg 2015-01-22
    32 schema:description Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.
    33 schema:genre article
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N4bcac5b790074e16ac702911f55dd552
    36 Ne6315da5885d4587b0bd38ec4fea2745
    37 sg:journal.1043282
    38 schema:keywords account
    39 agriculture
    40 area
    41 breadbasket
    42 changes
    43 climate change
    44 climate variability
    45 climate variations
    46 crop production
    47 crop yield
    48 crop yield variability
    49 different regions
    50 drivers
    51 further research
    52 future crop production
    53 global breadbaskets
    54 global crop yield variability
    55 influence
    56 inter-annual climate variations
    57 interaction
    58 intervention
    59 key drivers
    60 maize
    61 mean climate change
    62 observed variation
    63 observed yield variability
    64 patterns
    65 policy interventions
    66 political units
    67 precipitation
    68 production
    69 recent climate variability
    70 region
    71 relationship
    72 research
    73 rice
    74 role
    75 series
    76 significant influence
    77 soybean crop yield
    78 spatial patterns
    79 study
    80 substantial areas
    81 temperature
    82 third
    83 time series
    84 understanding
    85 units
    86 variability
    87 variability accounts
    88 variation
    89 wheat
    90 yield
    91 yield variability
    92 schema:name Climate variation explains a third of global crop yield variability
    93 schema:pagination 5989
    94 schema:productId N3f67a822fd024c01af42605cd46f24a3
    95 N6f92877269f24bf382f6bac4395b58bb
    96 Ne4ffc99b43024524a7a23f473f1fbb28
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010392333
    98 https://doi.org/10.1038/ncomms6989
    99 schema:sdDatePublished 2022-08-04T17:04
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher Ne0f30ea4929042a0b6157d2d5611da3f
    102 schema:url https://doi.org/10.1038/ncomms6989
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N3820c4fba9bb416b8af4fe7bbd1ead39 rdf:first sg:person.01124627140.25
    107 rdf:rest Nd242f89d911f4eb5bf906a4ce25b4c56
    108 N3a9b59f1fbe34ffe8ff33b060ce119f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Models, Statistical
    110 rdf:type schema:DefinedTerm
    111 N3f67a822fd024c01af42605cd46f24a3 schema:name pubmed_id
    112 schema:value 25609225
    113 rdf:type schema:PropertyValue
    114 N4bcac5b790074e16ac702911f55dd552 schema:volumeNumber 6
    115 rdf:type schema:PublicationVolume
    116 N4f3843e376054db7bbdad6040522405e rdf:first sg:person.01335223172.70
    117 rdf:rest Nfaa16702606c471dbeeaeb7c9cbeb04c
    118 N660dbc74fe0b4250873722bc20421eba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Zea mays
    120 rdf:type schema:DefinedTerm
    121 N6cd9a9d032ad4f918aaaf873a1f943e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Oryza
    123 rdf:type schema:DefinedTerm
    124 N6f92877269f24bf382f6bac4395b58bb schema:name dimensions_id
    125 schema:value pub.1010392333
    126 rdf:type schema:PropertyValue
    127 N820686dba99a4c40b5f5d5fea431b802 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Agriculture
    129 rdf:type schema:DefinedTerm
    130 N88167168c86741f2a094026b05b116ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Climate
    132 rdf:type schema:DefinedTerm
    133 N8b898e88e88240218b7e9227c2d1e08a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Temperature
    135 rdf:type schema:DefinedTerm
    136 N933bf7d2331a4c93985d1bfc37411bed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Climate Change
    138 rdf:type schema:DefinedTerm
    139 Na43ae68805b54992b4688d52f6d06003 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Triticum
    141 rdf:type schema:DefinedTerm
    142 Nb7e004923aa341189b8eb478fbbed3cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Crops, Agricultural
    144 rdf:type schema:DefinedTerm
    145 Nc0728315dbb8415d98d120acfc663c65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Geography
    147 rdf:type schema:DefinedTerm
    148 Ncf20379ed6524a20935b706b88a7b47b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Environmental Monitoring
    150 rdf:type schema:DefinedTerm
    151 Nd242f89d911f4eb5bf906a4ce25b4c56 rdf:first sg:person.0642342216.39
    152 rdf:rest N4f3843e376054db7bbdad6040522405e
    153 Ne0f30ea4929042a0b6157d2d5611da3f schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 Ne4ffc99b43024524a7a23f473f1fbb28 schema:name doi
    156 schema:value 10.1038/ncomms6989
    157 rdf:type schema:PropertyValue
    158 Ne6315da5885d4587b0bd38ec4fea2745 schema:issueNumber 1
    159 rdf:type schema:PublicationIssue
    160 Nfaa16702606c471dbeeaeb7c9cbeb04c rdf:first sg:person.01141132416.30
    161 rdf:rest rdf:nil
    162 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Biological Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Plant Biology
    167 rdf:type schema:DefinedTerm
    168 sg:grant.4178317 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms6989
    169 rdf:type schema:MonetaryGrant
    170 sg:grant.8698129 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms6989
    171 rdf:type schema:MonetaryGrant
    172 sg:journal.1043282 schema:issn 2041-1723
    173 schema:name Nature Communications
    174 schema:publisher Springer Nature
    175 rdf:type schema:Periodical
    176 sg:person.01124627140.25 schema:affiliation grid-institutes:grid.17635.36
    177 schema:familyName Ray
    178 schema:givenName Deepak K.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124627140.25
    180 rdf:type schema:Person
    181 sg:person.01141132416.30 schema:affiliation grid-institutes:grid.17635.36
    182 schema:familyName West
    183 schema:givenName Paul C.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141132416.30
    185 rdf:type schema:Person
    186 sg:person.01335223172.70 schema:affiliation grid-institutes:grid.17635.36
    187 schema:familyName MacDonald
    188 schema:givenName Graham K.
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335223172.70
    190 rdf:type schema:Person
    191 sg:person.0642342216.39 schema:affiliation grid-institutes:grid.17635.36
    192 schema:familyName Gerber
    193 schema:givenName James S.
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642342216.39
    195 rdf:type schema:Person
    196 sg:pub.10.1007/s10584-005-5939-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043330986
    197 https://doi.org/10.1007/s10584-005-5939-7
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s10584-010-9931-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002744884
    200 https://doi.org/10.1007/s10584-010-9931-5
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s10584-012-0428-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002370482
    203 https://doi.org/10.1007/s10584-012-0428-2
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s10584-012-0491-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010419905
    206 https://doi.org/10.1007/s10584-012-0491-8
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s10584-012-0509-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014518726
    209 https://doi.org/10.1007/s10584-012-0509-2
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s10584-013-0765-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041869494
    212 https://doi.org/10.1007/s10584-013-0765-9
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/370204a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026802797
    215 https://doi.org/10.1038/370204a0
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nature10452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025472352
    218 https://doi.org/10.1038/nature10452
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nclimate1356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001801
    221 https://doi.org/10.1038/nclimate1356
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nclimate1585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022202325
    224 https://doi.org/10.1038/nclimate1585
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nclimate1832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011317676
    227 https://doi.org/10.1038/nclimate1832
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nclimate1916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017341934
    230 https://doi.org/10.1038/nclimate1916
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nclimate1945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036697184
    233 https://doi.org/10.1038/nclimate1945
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nclimate1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030445199
    236 https://doi.org/10.1038/nclimate1990
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/ncomms2296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045642720
    239 https://doi.org/10.1038/ncomms2296
    240 rdf:type schema:CreativeWork
    241 grid-institutes:grid.17635.36 schema:alternateName Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA
    242 schema:name Institute on the Environment (IonE), University of Minnesota, 55108, Saint Paul, Minnesota, USA
    243 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...