Evolution of hidden localized flow during glass-to-liquid transition in metallic glass View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12-15

AUTHORS

Z. Wang, B. A. Sun, H. Y. Bai, W. H. Wang

ABSTRACT

For glasses, the structural origin of their flow phenomena, such as elastic and plastic deformations especially the microscopic hidden flow before yield and glass-to-liquid transition (GLT), is unclear yet due to the lack of structural information. Here we investigate the evolution of the microscopic localized flow during GLT in a prototypical metallic glass combining with dynamical mechanical relaxations, temperature-dependent tensile experiments and stress relaxation spectra. We show that the unstable and high mobility nano-scale liquid-like regions acting as flow units persist in the glass and can be activated by either temperature or external stress. The activation of such flow units is initially reversible and correlated with β-relaxation. As the proportion of the flow units reaches a critical percolation value, a mechanical brittle-to-ductile transition or macroscopic GLT happens. A comprehensive picture on the hidden flow as well as its correlation with deformation maps and relaxation spectrum is proposed. More... »

PAGES

5823

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms6823

DOI

http://dx.doi.org/10.1038/ncomms6823

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017749130

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25504332


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Z.", 
        "id": "sg:person.010144440027.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010144440027.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "B. A.", 
        "id": "sg:person.016250700645.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250700645.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "H. Y.", 
        "id": "sg:person.0640310271.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "W. H.", 
        "id": "sg:person.01363714371.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034149236", 
          "https://doi.org/10.1038/nmat2802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035691384", 
          "https://doi.org/10.1038/nmat1536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010966913", 
          "https://doi.org/10.1038/ncomms5238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/mrs2007.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067969206", 
          "https://doi.org/10.1557/mrs2007.124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007316134", 
          "https://doi.org/10.1038/nmat3024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036502763", 
          "https://doi.org/10.1038/nature02295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005355581", 
          "https://doi.org/10.1038/35065704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030781536", 
          "https://doi.org/10.1038/ncomms3809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046480888", 
          "https://doi.org/10.1038/ncomms3204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021477303", 
          "https://doi.org/10.1038/nmat1219"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12-15", 
    "datePublishedReg": "2014-12-15", 
    "description": "For glasses, the structural origin of their flow phenomena, such as elastic and plastic deformations especially the microscopic hidden flow before yield and glass-to-liquid transition (GLT), is unclear yet due to the lack of structural information. Here we investigate the evolution of the microscopic localized flow during GLT in a prototypical metallic glass combining with dynamical mechanical relaxations, temperature-dependent tensile experiments and stress relaxation spectra. We show that the unstable and high mobility nano-scale liquid-like regions acting as flow units persist in the glass and can be activated by either temperature or external stress. The activation of such flow units is initially reversible and correlated with \u03b2-relaxation. As the proportion of the flow units reaches a critical percolation value, a mechanical brittle-to-ductile transition or macroscopic GLT happens. A comprehensive picture on the hidden flow as well as its correlation with deformation maps and relaxation spectrum is proposed.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms6823", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7194205", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "metallic glasses", 
      "flow units", 
      "plastic deformation", 
      "tensile experiments", 
      "liquid-like regions", 
      "flow phenomena", 
      "critical percolation value", 
      "localized flow", 
      "hidden flows", 
      "deformation maps", 
      "relaxation spectrum", 
      "stress relaxation spectra", 
      "liquid transition", 
      "mechanical relaxation", 
      "percolation value", 
      "external stress", 
      "glass", 
      "flow", 
      "\u03b2-relaxation", 
      "brittle", 
      "deformation", 
      "structural origin", 
      "temperature", 
      "units", 
      "transition", 
      "stress", 
      "evolution", 
      "experiments", 
      "spectra", 
      "phenomenon", 
      "relaxation", 
      "values", 
      "maps", 
      "structural information", 
      "yield", 
      "region", 
      "GLT", 
      "comprehensive picture", 
      "information", 
      "correlation", 
      "lack", 
      "picture", 
      "origin", 
      "proportion", 
      "activation"
    ], 
    "name": "Evolution of hidden localized flow during glass-to-liquid transition in metallic glass", 
    "pagination": "5823", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017749130"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms6823"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25504332"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms6823", 
      "https://app.dimensions.ai/details/publication/pub.1017749130"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_621.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms6823"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms6823'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms6823'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms6823'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms6823'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      80 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms6823 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc6ca5f11413b4c958cb848313ffd959f
4 schema:citation sg:pub.10.1038/35065704
5 sg:pub.10.1038/nature02295
6 sg:pub.10.1038/ncomms3204
7 sg:pub.10.1038/ncomms3809
8 sg:pub.10.1038/ncomms5238
9 sg:pub.10.1038/nmat1219
10 sg:pub.10.1038/nmat1536
11 sg:pub.10.1038/nmat2802
12 sg:pub.10.1038/nmat3024
13 sg:pub.10.1557/mrs2007.124
14 schema:datePublished 2014-12-15
15 schema:datePublishedReg 2014-12-15
16 schema:description For glasses, the structural origin of their flow phenomena, such as elastic and plastic deformations especially the microscopic hidden flow before yield and glass-to-liquid transition (GLT), is unclear yet due to the lack of structural information. Here we investigate the evolution of the microscopic localized flow during GLT in a prototypical metallic glass combining with dynamical mechanical relaxations, temperature-dependent tensile experiments and stress relaxation spectra. We show that the unstable and high mobility nano-scale liquid-like regions acting as flow units persist in the glass and can be activated by either temperature or external stress. The activation of such flow units is initially reversible and correlated with β-relaxation. As the proportion of the flow units reaches a critical percolation value, a mechanical brittle-to-ductile transition or macroscopic GLT happens. A comprehensive picture on the hidden flow as well as its correlation with deformation maps and relaxation spectrum is proposed.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N0585bdb0922e4e83b90966601e46553b
20 Nd65248f550e34cad823a7bc403700b51
21 sg:journal.1043282
22 schema:keywords GLT
23 activation
24 brittle
25 comprehensive picture
26 correlation
27 critical percolation value
28 deformation
29 deformation maps
30 evolution
31 experiments
32 external stress
33 flow
34 flow phenomena
35 flow units
36 glass
37 hidden flows
38 information
39 lack
40 liquid transition
41 liquid-like regions
42 localized flow
43 maps
44 mechanical relaxation
45 metallic glasses
46 origin
47 percolation value
48 phenomenon
49 picture
50 plastic deformation
51 proportion
52 region
53 relaxation
54 relaxation spectrum
55 spectra
56 stress
57 stress relaxation spectra
58 structural information
59 structural origin
60 temperature
61 tensile experiments
62 transition
63 units
64 values
65 yield
66 β-relaxation
67 schema:name Evolution of hidden localized flow during glass-to-liquid transition in metallic glass
68 schema:pagination 5823
69 schema:productId N1511a81cc65a477d8b4a39195743d9a1
70 N1890458004c54f67bef6b6638389f209
71 Nba7bdba440464620b8a819879ca9f5be
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017749130
73 https://doi.org/10.1038/ncomms6823
74 schema:sdDatePublished 2022-12-01T06:31
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N8b2b0927c29f4cadbe60f22435158b35
77 schema:url https://doi.org/10.1038/ncomms6823
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0585bdb0922e4e83b90966601e46553b schema:volumeNumber 5
82 rdf:type schema:PublicationVolume
83 N1511a81cc65a477d8b4a39195743d9a1 schema:name pubmed_id
84 schema:value 25504332
85 rdf:type schema:PropertyValue
86 N1890458004c54f67bef6b6638389f209 schema:name dimensions_id
87 schema:value pub.1017749130
88 rdf:type schema:PropertyValue
89 N287f0b1e206a471ebbadeb4872d3af93 rdf:first sg:person.01363714371.28
90 rdf:rest rdf:nil
91 N2e451cbcd39f47e1a93170d94b8dc199 rdf:first sg:person.0640310271.16
92 rdf:rest N287f0b1e206a471ebbadeb4872d3af93
93 N8b2b0927c29f4cadbe60f22435158b35 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nba7bdba440464620b8a819879ca9f5be schema:name doi
96 schema:value 10.1038/ncomms6823
97 rdf:type schema:PropertyValue
98 Nc6ca5f11413b4c958cb848313ffd959f rdf:first sg:person.010144440027.11
99 rdf:rest Nc8ea8c3ab60444e584fafe58ad7ff394
100 Nc8ea8c3ab60444e584fafe58ad7ff394 rdf:first sg:person.016250700645.65
101 rdf:rest N2e451cbcd39f47e1a93170d94b8dc199
102 Nd65248f550e34cad823a7bc403700b51 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
108 schema:name Materials Engineering
109 rdf:type schema:DefinedTerm
110 sg:grant.7194205 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms6823
111 rdf:type schema:MonetaryGrant
112 sg:journal.1043282 schema:issn 2041-1723
113 schema:name Nature Communications
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.010144440027.11 schema:affiliation grid-institutes:grid.458438.6
117 schema:familyName Wang
118 schema:givenName Z.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010144440027.11
120 rdf:type schema:Person
121 sg:person.01363714371.28 schema:affiliation grid-institutes:grid.458438.6
122 schema:familyName Wang
123 schema:givenName W. H.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28
125 rdf:type schema:Person
126 sg:person.016250700645.65 schema:affiliation grid-institutes:grid.458438.6
127 schema:familyName Sun
128 schema:givenName B. A.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250700645.65
130 rdf:type schema:Person
131 sg:person.0640310271.16 schema:affiliation grid-institutes:grid.458438.6
132 schema:familyName Bai
133 schema:givenName H. Y.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16
135 rdf:type schema:Person
136 sg:pub.10.1038/35065704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005355581
137 https://doi.org/10.1038/35065704
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature02295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036502763
140 https://doi.org/10.1038/nature02295
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/ncomms3204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046480888
143 https://doi.org/10.1038/ncomms3204
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ncomms3809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030781536
146 https://doi.org/10.1038/ncomms3809
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ncomms5238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010966913
149 https://doi.org/10.1038/ncomms5238
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nmat1219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021477303
152 https://doi.org/10.1038/nmat1219
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nmat1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035691384
155 https://doi.org/10.1038/nmat1536
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nmat2802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034149236
158 https://doi.org/10.1038/nmat2802
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nmat3024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007316134
161 https://doi.org/10.1038/nmat3024
162 rdf:type schema:CreativeWork
163 sg:pub.10.1557/mrs2007.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969206
164 https://doi.org/10.1557/mrs2007.124
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
167 schema:name Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...