Lattice-free prediction of three-dimensional structure of programmed DNA assemblies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12-03

AUTHORS

Keyao Pan, Do-Nyun Kim, Fei Zhang, Matthew R. Adendorff, Hao Yan, Mark Bathe

ABSTRACT

DNA can be programmed to self-assemble into high molecular weight 3D assemblies with precise nanometer-scale structural features. Although numerous sequence design strategies exist to realize these assemblies in solution, there is currently no computational framework to predict their 3D structures on the basis of programmed underlying multi-way junction topologies constrained by DNA duplexes. Here, we introduce such an approach and apply it to assemblies designed using the canonical immobile four-way junction. The procedure is used to predict the 3D structure of high molecular weight planar and spherical ring-like origami objects, a tile-based sheet-like ribbon, and a 3D crystalline tensegrity motif, in quantitative agreement with experiments. Our framework provides a new approach to predict programmed nucleic acid 3D structure on the basis of prescribed secondary structure motifs, with possible application to the design of such assemblies for use in biomolecular and materials science. More... »

PAGES

5578

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms6578

DOI

http://dx.doi.org/10.1038/ncomms6578

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045538736

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25470497


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 255, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 255, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Keyao", 
        "id": "sg:person.01340361321.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340361321.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, Seoul National University, 301-dong 1516-ho, Gwanak-ro 1, 151-744, Gwanak-gu, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Seoul National University, 301-dong 1516-ho, Gwanak-ro 1, 151-744, Gwanak-gu, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Do-Nyun", 
        "id": "sg:person.0612077076.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612077076.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, Arizona State University, 85287, Tempe, Arizona, USA", 
          "id": "http://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Center for Molecular Design and Biomimicry, the Biodesign Institute, Arizona State University, 85287, Tempe, Arizona, USA", 
            "Department of Chemistry and Biochemistry, Arizona State University, 85287, Tempe, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fei", 
        "id": "sg:person.01227175741.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227175741.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 255, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 255, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adendorff", 
        "givenName": "Matthew R.", 
        "id": "sg:person.01264111675.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264111675.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, Arizona State University, 85287, Tempe, Arizona, USA", 
          "id": "http://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Center for Molecular Design and Biomimicry, the Biodesign Institute, Arizona State University, 85287, Tempe, Arizona, USA", 
            "Department of Chemistry and Biochemistry, Arizona State University, 85287, Tempe, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Hao", 
        "id": "sg:person.0727257441.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727257441.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 255, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 255, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bathe", 
        "givenName": "Mark", 
        "id": "sg:person.01372323630.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372323630.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/13277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052145482", 
          "https://doi.org/10.1038/13277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017177016", 
          "https://doi.org/10.1038/nature11075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013163341", 
          "https://doi.org/10.1038/nature08274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-03076-5_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024916355", 
          "https://doi.org/10.1007/978-3-642-03076-5_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/341763a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024239208", 
          "https://doi.org/10.1038/341763a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014882666", 
          "https://doi.org/10.1038/nsb883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/28998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015431161", 
          "https://doi.org/10.1038/28998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026328117", 
          "https://doi.org/10.1038/nnano.2010.160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040656204", 
          "https://doi.org/10.1038/nature06597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000109646", 
          "https://doi.org/10.1038/nature08016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029360393", 
          "https://doi.org/10.1038/nnano.2011.187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.1463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014420789", 
          "https://doi.org/10.1038/nchem.1463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026485677", 
          "https://doi.org/10.1038/nature07971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044657906", 
          "https://doi.org/10.1038/nmeth.1570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028635122", 
          "https://doi.org/10.1038/nature04586"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12-03", 
    "datePublishedReg": "2014-12-03", 
    "description": "DNA can be programmed to self-assemble into high molecular weight 3D assemblies with precise nanometer-scale structural features. Although numerous sequence design strategies exist to realize these assemblies in solution, there is currently no computational framework to predict their 3D structures on the basis of programmed underlying multi-way junction topologies constrained by DNA duplexes. Here, we introduce such an approach and apply it to assemblies designed using the canonical immobile four-way junction. The procedure is used to predict the 3D structure of high molecular weight planar and spherical ring-like origami objects, a tile-based sheet-like ribbon, and a 3D crystalline tensegrity motif, in quantitative agreement with experiments. Our framework provides a new approach to predict programmed nucleic acid 3D structure on the basis of prescribed secondary structure motifs, with possible application to the design of such assemblies for use in biomolecular and materials science.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms6578", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3488208", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "origami objects", 
      "materials science", 
      "DNA assembly", 
      "secondary structure motifs", 
      "such assemblies", 
      "DNA duplex", 
      "three-dimensional structure", 
      "structure motifs", 
      "structural features", 
      "sequence design strategies", 
      "design strategy", 
      "assembly", 
      "four-way junction", 
      "quantitative agreement", 
      "possible applications", 
      "computational framework", 
      "structure", 
      "biomolecular", 
      "new approach", 
      "junction topology", 
      "ribbons", 
      "duplex", 
      "design", 
      "planar", 
      "topology", 
      "motif", 
      "applications", 
      "solution", 
      "prediction", 
      "agreement", 
      "approach", 
      "experiments", 
      "junction", 
      "framework", 
      "basis", 
      "DNA", 
      "procedure", 
      "objects", 
      "use", 
      "features", 
      "strategies", 
      "science"
    ], 
    "name": "Lattice-free prediction of three-dimensional structure of programmed DNA assemblies", 
    "pagination": "5578", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045538736"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms6578"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25470497"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms6578", 
      "https://app.dimensions.ai/details/publication/pub.1045538736"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_633.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms6578"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms6578'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms6578'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms6578'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms6578'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      86 URIs      63 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms6578 schema:about N154a63edfeb94fa4930e8ef8ea3c014c
2 N2d912bf3d1e444858c095a3fb42fcbc9
3 N69373e2e4beb4fff99ea4accb45f8f66
4 N9e8cc148c87f4ee9b25ab8ca61b0c2a5
5 anzsrc-for:03
6 anzsrc-for:0303
7 schema:author N1722e42110d241b9b65c0b7b2cfa4f72
8 schema:citation sg:pub.10.1007/978-3-642-03076-5_8
9 sg:pub.10.1038/13277
10 sg:pub.10.1038/28998
11 sg:pub.10.1038/341763a0
12 sg:pub.10.1038/nature04586
13 sg:pub.10.1038/nature06597
14 sg:pub.10.1038/nature07971
15 sg:pub.10.1038/nature08016
16 sg:pub.10.1038/nature08274
17 sg:pub.10.1038/nature11075
18 sg:pub.10.1038/nchem.1463
19 sg:pub.10.1038/nmeth.1570
20 sg:pub.10.1038/nnano.2010.160
21 sg:pub.10.1038/nnano.2011.187
22 sg:pub.10.1038/nsb883
23 schema:datePublished 2014-12-03
24 schema:datePublishedReg 2014-12-03
25 schema:description DNA can be programmed to self-assemble into high molecular weight 3D assemblies with precise nanometer-scale structural features. Although numerous sequence design strategies exist to realize these assemblies in solution, there is currently no computational framework to predict their 3D structures on the basis of programmed underlying multi-way junction topologies constrained by DNA duplexes. Here, we introduce such an approach and apply it to assemblies designed using the canonical immobile four-way junction. The procedure is used to predict the 3D structure of high molecular weight planar and spherical ring-like origami objects, a tile-based sheet-like ribbon, and a 3D crystalline tensegrity motif, in quantitative agreement with experiments. Our framework provides a new approach to predict programmed nucleic acid 3D structure on the basis of prescribed secondary structure motifs, with possible application to the design of such assemblies for use in biomolecular and materials science.
26 schema:genre article
27 schema:isAccessibleForFree true
28 schema:isPartOf N39899f10bc4b4dfc84197467753931c0
29 Nc9e7f6fee20d49d88498d7f4995eee5d
30 sg:journal.1043282
31 schema:keywords DNA
32 DNA assembly
33 DNA duplex
34 agreement
35 applications
36 approach
37 assembly
38 basis
39 biomolecular
40 computational framework
41 design
42 design strategy
43 duplex
44 experiments
45 features
46 four-way junction
47 framework
48 junction
49 junction topology
50 materials science
51 motif
52 new approach
53 objects
54 origami objects
55 planar
56 possible applications
57 prediction
58 procedure
59 quantitative agreement
60 ribbons
61 science
62 secondary structure motifs
63 sequence design strategies
64 solution
65 strategies
66 structural features
67 structure
68 structure motifs
69 such assemblies
70 three-dimensional structure
71 topology
72 use
73 schema:name Lattice-free prediction of three-dimensional structure of programmed DNA assemblies
74 schema:pagination 5578
75 schema:productId N1ce45809c2594965ae4fd78c1d3a5ce6
76 Na79b82b7591e486885e19cd83572e28b
77 Nbc9c739ec523415c8644181a3dbdc9bd
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045538736
79 https://doi.org/10.1038/ncomms6578
80 schema:sdDatePublished 2022-08-04T17:01
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nd59539ba576e4bc9802e1b7d77d25d19
83 schema:url https://doi.org/10.1038/ncomms6578
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N154a63edfeb94fa4930e8ef8ea3c014c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Models, Molecular
89 rdf:type schema:DefinedTerm
90 N1722e42110d241b9b65c0b7b2cfa4f72 rdf:first sg:person.01340361321.48
91 rdf:rest N25a8f72cab2147eab4328cee322ea238
92 N1ce45809c2594965ae4fd78c1d3a5ce6 schema:name doi
93 schema:value 10.1038/ncomms6578
94 rdf:type schema:PropertyValue
95 N25a8f72cab2147eab4328cee322ea238 rdf:first sg:person.0612077076.78
96 rdf:rest N8fec025519684bc9a3ffe1615613d280
97 N2d912bf3d1e444858c095a3fb42fcbc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Nucleic Acid Conformation
99 rdf:type schema:DefinedTerm
100 N314b03202ca344b6b366723c1550bffe rdf:first sg:person.0727257441.61
101 rdf:rest N8d2bcbfec9ba4dd7811f1d0361f96ae1
102 N39899f10bc4b4dfc84197467753931c0 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 N69373e2e4beb4fff99ea4accb45f8f66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name DNA
106 rdf:type schema:DefinedTerm
107 N6b7b496f2a17467faf5e64d7305c85d5 rdf:first sg:person.01264111675.25
108 rdf:rest N314b03202ca344b6b366723c1550bffe
109 N8d2bcbfec9ba4dd7811f1d0361f96ae1 rdf:first sg:person.01372323630.95
110 rdf:rest rdf:nil
111 N8fec025519684bc9a3ffe1615613d280 rdf:first sg:person.01227175741.13
112 rdf:rest N6b7b496f2a17467faf5e64d7305c85d5
113 N9e8cc148c87f4ee9b25ab8ca61b0c2a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Nanotechnology
115 rdf:type schema:DefinedTerm
116 Na79b82b7591e486885e19cd83572e28b schema:name dimensions_id
117 schema:value pub.1045538736
118 rdf:type schema:PropertyValue
119 Nbc9c739ec523415c8644181a3dbdc9bd schema:name pubmed_id
120 schema:value 25470497
121 rdf:type schema:PropertyValue
122 Nc9e7f6fee20d49d88498d7f4995eee5d schema:volumeNumber 5
123 rdf:type schema:PublicationVolume
124 Nd59539ba576e4bc9802e1b7d77d25d19 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
127 schema:name Chemical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
130 schema:name Macromolecular and Materials Chemistry
131 rdf:type schema:DefinedTerm
132 sg:grant.3488208 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms6578
133 rdf:type schema:MonetaryGrant
134 sg:journal.1043282 schema:issn 2041-1723
135 schema:name Nature Communications
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.01227175741.13 schema:affiliation grid-institutes:grid.215654.1
139 schema:familyName Zhang
140 schema:givenName Fei
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227175741.13
142 rdf:type schema:Person
143 sg:person.01264111675.25 schema:affiliation grid-institutes:grid.116068.8
144 schema:familyName Adendorff
145 schema:givenName Matthew R.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264111675.25
147 rdf:type schema:Person
148 sg:person.01340361321.48 schema:affiliation grid-institutes:grid.116068.8
149 schema:familyName Pan
150 schema:givenName Keyao
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340361321.48
152 rdf:type schema:Person
153 sg:person.01372323630.95 schema:affiliation grid-institutes:grid.116068.8
154 schema:familyName Bathe
155 schema:givenName Mark
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372323630.95
157 rdf:type schema:Person
158 sg:person.0612077076.78 schema:affiliation grid-institutes:grid.31501.36
159 schema:familyName Kim
160 schema:givenName Do-Nyun
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612077076.78
162 rdf:type schema:Person
163 sg:person.0727257441.61 schema:affiliation grid-institutes:grid.215654.1
164 schema:familyName Yan
165 schema:givenName Hao
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727257441.61
167 rdf:type schema:Person
168 sg:pub.10.1007/978-3-642-03076-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024916355
169 https://doi.org/10.1007/978-3-642-03076-5_8
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/13277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052145482
172 https://doi.org/10.1038/13277
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/28998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015431161
175 https://doi.org/10.1038/28998
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/341763a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024239208
178 https://doi.org/10.1038/341763a0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nature04586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028635122
181 https://doi.org/10.1038/nature04586
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nature06597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656204
184 https://doi.org/10.1038/nature06597
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature07971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026485677
187 https://doi.org/10.1038/nature07971
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature08016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000109646
190 https://doi.org/10.1038/nature08016
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nature08274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013163341
193 https://doi.org/10.1038/nature08274
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nature11075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017177016
196 https://doi.org/10.1038/nature11075
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nchem.1463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014420789
199 https://doi.org/10.1038/nchem.1463
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nmeth.1570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044657906
202 https://doi.org/10.1038/nmeth.1570
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nnano.2010.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026328117
205 https://doi.org/10.1038/nnano.2010.160
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nnano.2011.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029360393
208 https://doi.org/10.1038/nnano.2011.187
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nsb883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014882666
211 https://doi.org/10.1038/nsb883
212 rdf:type schema:CreativeWork
213 grid-institutes:grid.116068.8 schema:alternateName Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 255, 02139, Cambridge, Massachusetts, USA
214 schema:name Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 255, 02139, Cambridge, Massachusetts, USA
215 rdf:type schema:Organization
216 grid-institutes:grid.215654.1 schema:alternateName Department of Chemistry and Biochemistry, Arizona State University, 85287, Tempe, Arizona, USA
217 schema:name Center for Molecular Design and Biomimicry, the Biodesign Institute, Arizona State University, 85287, Tempe, Arizona, USA
218 Department of Chemistry and Biochemistry, Arizona State University, 85287, Tempe, Arizona, USA
219 rdf:type schema:Organization
220 grid-institutes:grid.31501.36 schema:alternateName Department of Mechanical and Aerospace Engineering, Seoul National University, 301-dong 1516-ho, Gwanak-ro 1, 151-744, Gwanak-gu, Seoul, Republic of Korea
221 schema:name Department of Mechanical and Aerospace Engineering, Seoul National University, 301-dong 1516-ho, Gwanak-ro 1, 151-744, Gwanak-gu, Seoul, Republic of Korea
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...