Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Reza Maram, James Van Howe, Ming Li, José Azaña

ABSTRACT

Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system. More... »

PAGES

5163

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms6163

DOI

http://dx.doi.org/10.1038/ncomms6163

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040805400

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25319207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut National de la Recherche Scientifique (INRS)\u2014Energie, Mat\u00e9riaux et T\u00e9l\u00e9communications, Montr\u00e9al, Qu\u00e9bec, Canada H5A 1K6"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maram", 
        "givenName": "Reza", 
        "id": "sg:person.0774014172.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774014172.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Augustana College", 
          "id": "https://www.grid.ac/institutes/grid.418167.d", 
          "name": [
            "Institut National de la Recherche Scientifique (INRS)\u2014Energie, Mat\u00e9riaux et T\u00e9l\u00e9communications, Montr\u00e9al, Qu\u00e9bec, Canada H5A 1K6", 
            "Department of Physics and Astronomy, Augustana College, Rock Island, Illinois 61201, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Howe", 
        "givenName": "James", 
        "id": "sg:person.01012600764.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012600764.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductors", 
          "id": "https://www.grid.ac/institutes/grid.454865.e", 
          "name": [
            "Institut National de la Recherche Scientifique (INRS)\u2014Energie, Mat\u00e9riaux et T\u00e9l\u00e9communications, Montr\u00e9al, Qu\u00e9bec, Canada H5A 1K6", 
            "State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ming", 
        "id": "sg:person.014720465513.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014720465513.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut National de la Recherche Scientifique (INRS)\u2014Energie, Mat\u00e9riaux et T\u00e9l\u00e9communications, Montr\u00e9al, Qu\u00e9bec, Canada H5A 1K6"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aza\u00f1a", 
        "givenName": "Jos\u00e9", 
        "id": "sg:person.01044141641.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044141641.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001677407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001677407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.103601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002212371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.103601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002212371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.74.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013098526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.74.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013098526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2012.06.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016891779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.000255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018736979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.000255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018736979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028724631", 
          "https://doi.org/10.1038/nmeth818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028724631", 
          "https://doi.org/10.1038/nmeth818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35046000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041220065", 
          "https://doi.org/10.1038/35046000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35046000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041220065", 
          "https://doi.org/10.1038/35046000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2011.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049173048", 
          "https://doi.org/10.1038/nphoton.2011.79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19870719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056771719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.085501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.085501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2944.974245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jlt.2006.885782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061283861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jlt.2012.2205134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061286674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2007.901891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061335437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2010.2051216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061336157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1596192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062234612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5448.2309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062567708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.21.001170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065171061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.006351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065185271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.27.001848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065220638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.28.002396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065221442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.000716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.34.001378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065227170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.36.000858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065229857"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms6163", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect", 
    "pagination": "5163", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c2618801d527da576755f3df6810882748bcc89110bd6a6a11105f64d493093c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25319207"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms6163"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040805400"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms6163", 
      "https://app.dimensions.ai/details/publication/pub.1040805400"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms6163"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms6163'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms6163'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms6163'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms6163'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms6163 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N2dad25d4a01346e7bd7f75f5e27baf45
4 schema:citation sg:pub.10.1038/35046000
5 sg:pub.10.1038/nature04932
6 sg:pub.10.1038/nmeth818
7 sg:pub.10.1038/nphoton.2011.79
8 https://doi.org/10.1016/j.optlastec.2012.06.037
9 https://doi.org/10.1049/el:19870719
10 https://doi.org/10.1103/physrev.74.230
11 https://doi.org/10.1103/physrevlett.101.103601
12 https://doi.org/10.1103/physrevlett.104.085501
13 https://doi.org/10.1103/physrevlett.83.5407
14 https://doi.org/10.1103/revmodphys.78.309
15 https://doi.org/10.1103/revmodphys.81.1051
16 https://doi.org/10.1109/2944.974245
17 https://doi.org/10.1109/jlt.2006.885782
18 https://doi.org/10.1109/jlt.2012.2205134
19 https://doi.org/10.1109/jstqe.2007.901891
20 https://doi.org/10.1109/jstqe.2010.2051216
21 https://doi.org/10.1119/1.1596192
22 https://doi.org/10.1126/science.286.5448.2309
23 https://doi.org/10.1364/josab.21.001170
24 https://doi.org/10.1364/oe.15.006351
25 https://doi.org/10.1364/oe.19.000255
26 https://doi.org/10.1364/ol.27.001848
27 https://doi.org/10.1364/ol.28.002396
28 https://doi.org/10.1364/ol.32.000716
29 https://doi.org/10.1364/ol.34.001378
30 https://doi.org/10.1364/ol.36.000858
31 schema:datePublished 2014-12
32 schema:datePublishedReg 2014-12-01
33 schema:description Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N1790e43f12e845a3894c12d902e709b6
38 N92083d015ad34d239142526ab30dc691
39 sg:journal.1043282
40 schema:name Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect
41 schema:pagination 5163
42 schema:productId N10a9825cabbf494db0783738f81df878
43 N266fa796e8294fe8a36c71306b857c0d
44 N2767fddd3cd34a1596bc4f17f8528ee3
45 N42282e33891641908f56a5a0cff3094c
46 N5669ccd84f7a4c79ad4363704c4e5180
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040805400
48 https://doi.org/10.1038/ncomms6163
49 schema:sdDatePublished 2019-04-10T14:49
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N9f25a8b9c04d49998a95a7cfa0d35b28
52 schema:url https://www.nature.com/articles/ncomms6163
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N10a9825cabbf494db0783738f81df878 schema:name nlm_unique_id
57 schema:value 101528555
58 rdf:type schema:PropertyValue
59 N1790e43f12e845a3894c12d902e709b6 schema:volumeNumber 5
60 rdf:type schema:PublicationVolume
61 N2449cd851b284a49b64500333092a27f rdf:first sg:person.01012600764.32
62 rdf:rest N46557923e78b4fcd8d8b016a6492d4ac
63 N266fa796e8294fe8a36c71306b857c0d schema:name doi
64 schema:value 10.1038/ncomms6163
65 rdf:type schema:PropertyValue
66 N2767fddd3cd34a1596bc4f17f8528ee3 schema:name dimensions_id
67 schema:value pub.1040805400
68 rdf:type schema:PropertyValue
69 N2dad25d4a01346e7bd7f75f5e27baf45 rdf:first sg:person.0774014172.23
70 rdf:rest N2449cd851b284a49b64500333092a27f
71 N341b7c9e415a47999a3b189d6d5a6ff1 schema:name Institut National de la Recherche Scientifique (INRS)—Energie, Matériaux et Télécommunications, Montréal, Québec, Canada H5A 1K6
72 rdf:type schema:Organization
73 N42282e33891641908f56a5a0cff3094c schema:name pubmed_id
74 schema:value 25319207
75 rdf:type schema:PropertyValue
76 N46557923e78b4fcd8d8b016a6492d4ac rdf:first sg:person.014720465513.27
77 rdf:rest N6fbe4c23e271403baaa0ae92fc34e3ba
78 N5669ccd84f7a4c79ad4363704c4e5180 schema:name readcube_id
79 schema:value c2618801d527da576755f3df6810882748bcc89110bd6a6a11105f64d493093c
80 rdf:type schema:PropertyValue
81 N6fbe4c23e271403baaa0ae92fc34e3ba rdf:first sg:person.01044141641.12
82 rdf:rest rdf:nil
83 N92083d015ad34d239142526ab30dc691 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N9f25a8b9c04d49998a95a7cfa0d35b28 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Na91d1fd6c9ac4080965762732d2e43e9 schema:name Institut National de la Recherche Scientifique (INRS)—Energie, Matériaux et Télécommunications, Montréal, Québec, Canada H5A 1K6
88 rdf:type schema:Organization
89 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
90 schema:name Engineering
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
93 schema:name Electrical and Electronic Engineering
94 rdf:type schema:DefinedTerm
95 sg:journal.1043282 schema:issn 2041-1723
96 schema:name Nature Communications
97 rdf:type schema:Periodical
98 sg:person.01012600764.32 schema:affiliation https://www.grid.ac/institutes/grid.418167.d
99 schema:familyName Van Howe
100 schema:givenName James
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012600764.32
102 rdf:type schema:Person
103 sg:person.01044141641.12 schema:affiliation N341b7c9e415a47999a3b189d6d5a6ff1
104 schema:familyName Azaña
105 schema:givenName José
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044141641.12
107 rdf:type schema:Person
108 sg:person.014720465513.27 schema:affiliation https://www.grid.ac/institutes/grid.454865.e
109 schema:familyName Li
110 schema:givenName Ming
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014720465513.27
112 rdf:type schema:Person
113 sg:person.0774014172.23 schema:affiliation Na91d1fd6c9ac4080965762732d2e43e9
114 schema:familyName Maram
115 schema:givenName Reza
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774014172.23
117 rdf:type schema:Person
118 sg:pub.10.1038/35046000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041220065
119 https://doi.org/10.1038/35046000
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature04932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048547410
122 https://doi.org/10.1038/nature04932
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmeth818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028724631
125 https://doi.org/10.1038/nmeth818
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nphoton.2011.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049173048
128 https://doi.org/10.1038/nphoton.2011.79
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.optlastec.2012.06.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016891779
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1049/el:19870719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056771719
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrev.74.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013098526
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.101.103601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002212371
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.104.085501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756648
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.83.5407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820548
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/revmodphys.78.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839613
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/revmodphys.81.1051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001677407
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/2944.974245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146112
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/jlt.2006.885782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061283861
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/jlt.2012.2205134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061286674
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/jstqe.2007.901891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061335437
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/jstqe.2010.2051216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061336157
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1119/1.1596192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062234612
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1126/science.286.5448.2309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062567708
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1364/josab.21.001170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065171061
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1364/oe.15.006351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065185271
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1364/oe.19.000255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018736979
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1364/ol.27.001848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220638
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1364/ol.28.002396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065221442
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1364/ol.32.000716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224717
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1364/ol.34.001378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065227170
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1364/ol.36.000858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065229857
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.418167.d schema:alternateName Augustana College
177 schema:name Department of Physics and Astronomy, Augustana College, Rock Island, Illinois 61201, USA
178 Institut National de la Recherche Scientifique (INRS)—Energie, Matériaux et Télécommunications, Montréal, Québec, Canada H5A 1K6
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.454865.e schema:alternateName Institute of Semiconductors
181 schema:name Institut National de la Recherche Scientifique (INRS)—Energie, Matériaux et Télécommunications, Montréal, Québec, Canada H5A 1K6
182 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...