Slow-light-enhanced gain in active photonic crystal waveguides View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-09-30

AUTHORS

Sara Ek, Per Lunnemann, Yaohui Chen, Elizaveta Semenova, Kresten Yvind, Jesper Mork

ABSTRACT

Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experimentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers. More... »

PAGES

5039

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms6039

DOI

http://dx.doi.org/10.1038/ncomms6039

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037015048

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25266779


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ek", 
        "givenName": "Sara", 
        "id": "sg:person.01042761512.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042761512.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lunnemann", 
        "givenName": "Per", 
        "id": "sg:person.01367710164.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367710164.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yaohui", 
        "id": "sg:person.0763453573.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763453573.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semenova", 
        "givenName": "Elizaveta", 
        "id": "sg:person.010767406335.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yvind", 
        "givenName": "Kresten", 
        "id": "sg:person.01136544222.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136544222.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mork", 
        "givenName": "Jesper", 
        "id": "sg:person.01047545773.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047545773.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms2092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022270979", 
          "https://doi.org/10.1038/ncomms2092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042764925", 
          "https://doi.org/10.1038/nnano.2014.34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027939919", 
          "https://doi.org/10.1038/nphoton.2008.147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2011.290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010560570", 
          "https://doi.org/10.1038/nphoton.2011.290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042899196", 
          "https://doi.org/10.1038/17561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003855408", 
          "https://doi.org/10.1038/nature04210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026542581", 
          "https://doi.org/10.1038/nphoton.2009.28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032552479", 
          "https://doi.org/10.1038/nphoton.2010.261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030199817", 
          "https://doi.org/10.1038/nphoton.2008.146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b138376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004962107", 
          "https://doi.org/10.1007/b138376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051823877", 
          "https://doi.org/10.1038/nphoton.2010.177"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09-30", 
    "datePublishedReg": "2014-09-30", 
    "description": "Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experimentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms6039", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "optical amplifier", 
      "photonic crystal membrane structure", 
      "embedded quantum wells", 
      "photonic crystal waveguides", 
      "slow light propagation", 
      "semiconductor optical amplifier", 
      "line-defect waveguide", 
      "ridge waveguide structure", 
      "photonic chip", 
      "slow light", 
      "quantum wells", 
      "crystal waveguides", 
      "photonic crystals", 
      "crystal structural parameters", 
      "waveguide structure", 
      "spectral position", 
      "gain coefficient", 
      "peak gain", 
      "enhanced gain", 
      "waveguide", 
      "effective gain", 
      "qualitative agreement", 
      "active material", 
      "interesting phenomenon", 
      "application prospects", 
      "amplifier", 
      "structural parameters", 
      "gain values", 
      "gain", 
      "chip", 
      "maximum value", 
      "crystals", 
      "experimental results", 
      "light", 
      "structure", 
      "materials", 
      "wells", 
      "propagation", 
      "agreement", 
      "membrane structure", 
      "state", 
      "theory", 
      "prospects", 
      "phenomenon", 
      "same time", 
      "integration", 
      "coefficient", 
      "parameters", 
      "values", 
      "position", 
      "multitude", 
      "time", 
      "results", 
      "example"
    ], 
    "name": "Slow-light-enhanced gain in active photonic crystal waveguides", 
    "pagination": "5039", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037015048"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms6039"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25266779"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms6039", 
      "https://app.dimensions.ai/details/publication/pub.1037015048"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_631.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms6039"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms6039'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms6039'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms6039'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms6039'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      22 PREDICATES      91 URIs      72 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms6039 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Ndc0d24cb583f465c8fb569e3ffdadd6a
4 schema:citation sg:pub.10.1007/b138376
5 sg:pub.10.1038/17561
6 sg:pub.10.1038/nature04210
7 sg:pub.10.1038/ncomms2092
8 sg:pub.10.1038/nnano.2014.34
9 sg:pub.10.1038/nphoton.2008.146
10 sg:pub.10.1038/nphoton.2008.147
11 sg:pub.10.1038/nphoton.2009.28
12 sg:pub.10.1038/nphoton.2010.177
13 sg:pub.10.1038/nphoton.2010.261
14 sg:pub.10.1038/nphoton.2011.290
15 schema:datePublished 2014-09-30
16 schema:datePublishedReg 2014-09-30
17 schema:description Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experimentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N0d181126f4264abca9368f5eab02d223
22 Nd7f527c92b0d49f4b959c5520a696424
23 sg:journal.1043282
24 schema:keywords active material
25 agreement
26 amplifier
27 application prospects
28 chip
29 coefficient
30 crystal structural parameters
31 crystal waveguides
32 crystals
33 effective gain
34 embedded quantum wells
35 enhanced gain
36 example
37 experimental results
38 gain
39 gain coefficient
40 gain values
41 integration
42 interesting phenomenon
43 light
44 line-defect waveguide
45 materials
46 maximum value
47 membrane structure
48 multitude
49 optical amplifier
50 parameters
51 peak gain
52 phenomenon
53 photonic chip
54 photonic crystal membrane structure
55 photonic crystal waveguides
56 photonic crystals
57 position
58 propagation
59 prospects
60 qualitative agreement
61 quantum wells
62 results
63 ridge waveguide structure
64 same time
65 semiconductor optical amplifier
66 slow light
67 slow light propagation
68 spectral position
69 state
70 structural parameters
71 structure
72 theory
73 time
74 values
75 waveguide
76 waveguide structure
77 wells
78 schema:name Slow-light-enhanced gain in active photonic crystal waveguides
79 schema:pagination 5039
80 schema:productId N83d8811e101c4320af98417553486e2e
81 N856b54efd3064e76bfa2bfeb9bb2d23b
82 Nfb3cf2dd4cdb46308716cff2dec20b66
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037015048
84 https://doi.org/10.1038/ncomms6039
85 schema:sdDatePublished 2022-06-01T22:12
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Nc6119647a0034120b427e527485634e1
88 schema:url https://doi.org/10.1038/ncomms6039
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N0d181126f4264abca9368f5eab02d223 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 N3591ee1cd1be4e98828834636d4b8d79 rdf:first sg:person.010767406335.85
95 rdf:rest Ndd1bb7d283a64538a88a464edb4eb2e8
96 N4b57818b86a0411c8508391779044f38 rdf:first sg:person.01367710164.41
97 rdf:rest N9b0d5637b3aa45789397784c9d6a6ff1
98 N69a4d13debc043b7bdf96788e6a1838e rdf:first sg:person.01047545773.07
99 rdf:rest rdf:nil
100 N83d8811e101c4320af98417553486e2e schema:name pubmed_id
101 schema:value 25266779
102 rdf:type schema:PropertyValue
103 N856b54efd3064e76bfa2bfeb9bb2d23b schema:name doi
104 schema:value 10.1038/ncomms6039
105 rdf:type schema:PropertyValue
106 N9b0d5637b3aa45789397784c9d6a6ff1 rdf:first sg:person.0763453573.85
107 rdf:rest N3591ee1cd1be4e98828834636d4b8d79
108 Nc6119647a0034120b427e527485634e1 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nd7f527c92b0d49f4b959c5520a696424 schema:volumeNumber 5
111 rdf:type schema:PublicationVolume
112 Ndc0d24cb583f465c8fb569e3ffdadd6a rdf:first sg:person.01042761512.42
113 rdf:rest N4b57818b86a0411c8508391779044f38
114 Ndd1bb7d283a64538a88a464edb4eb2e8 rdf:first sg:person.01136544222.92
115 rdf:rest N69a4d13debc043b7bdf96788e6a1838e
116 Nfb3cf2dd4cdb46308716cff2dec20b66 schema:name dimensions_id
117 schema:value pub.1037015048
118 rdf:type schema:PropertyValue
119 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
120 schema:name Physical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
123 schema:name Optical Physics
124 rdf:type schema:DefinedTerm
125 sg:journal.1043282 schema:issn 2041-1723
126 schema:name Nature Communications
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.01042761512.42 schema:affiliation grid-institutes:grid.5170.3
130 schema:familyName Ek
131 schema:givenName Sara
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042761512.42
133 rdf:type schema:Person
134 sg:person.01047545773.07 schema:affiliation grid-institutes:grid.5170.3
135 schema:familyName Mork
136 schema:givenName Jesper
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047545773.07
138 rdf:type schema:Person
139 sg:person.010767406335.85 schema:affiliation grid-institutes:grid.5170.3
140 schema:familyName Semenova
141 schema:givenName Elizaveta
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85
143 rdf:type schema:Person
144 sg:person.01136544222.92 schema:affiliation grid-institutes:grid.5170.3
145 schema:familyName Yvind
146 schema:givenName Kresten
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136544222.92
148 rdf:type schema:Person
149 sg:person.01367710164.41 schema:affiliation grid-institutes:grid.5170.3
150 schema:familyName Lunnemann
151 schema:givenName Per
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367710164.41
153 rdf:type schema:Person
154 sg:person.0763453573.85 schema:affiliation grid-institutes:grid.5170.3
155 schema:familyName Chen
156 schema:givenName Yaohui
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763453573.85
158 rdf:type schema:Person
159 sg:pub.10.1007/b138376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004962107
160 https://doi.org/10.1007/b138376
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/17561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042899196
163 https://doi.org/10.1038/17561
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature04210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003855408
166 https://doi.org/10.1038/nature04210
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ncomms2092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022270979
169 https://doi.org/10.1038/ncomms2092
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nnano.2014.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042764925
172 https://doi.org/10.1038/nnano.2014.34
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nphoton.2008.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030199817
175 https://doi.org/10.1038/nphoton.2008.146
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nphoton.2008.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027939919
178 https://doi.org/10.1038/nphoton.2008.147
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nphoton.2009.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026542581
181 https://doi.org/10.1038/nphoton.2009.28
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nphoton.2010.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051823877
184 https://doi.org/10.1038/nphoton.2010.177
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nphoton.2010.261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032552479
187 https://doi.org/10.1038/nphoton.2010.261
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nphoton.2011.290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010560570
190 https://doi.org/10.1038/nphoton.2011.290
191 rdf:type schema:CreativeWork
192 grid-institutes:grid.5170.3 schema:alternateName Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
193 schema:name Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...