Chiral spin torque arising from proximity-induced magnetization View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Kwang-Su Ryu, See-Hun Yang, Luc Thomas, Stuart S. P. Parkin

ABSTRACT

Domain walls can be driven by current at very high speeds in nanowires formed from ultra-thin, perpendicularly magnetized cobalt layers and cobalt/nickel multilayers deposited on platinum underlayers due to a chiral spin torque. An important feature of this torque is a magnetic chiral exchange field that each domain wall senses and that can be measured by the applied magnetic field amplitude along the nanowire where the domain walls stop moving irrespective of the magnitude of the current. Here we show that this torque is manifested when the magnetic layer is interfaced with metals that display a large proximity-induced magnetization, including iridium, palladium and platinum but not gold. A correlation between the strength of the chiral spin torque and the proximity-induced magnetic moment is demonstrated by interface engineering using atomically thin dusting layers. High domain velocities are found where there are large proximity-induced magnetizations in the interfaced metal layers. More... »

PAGES

3910

Journal

TITLE

Nature Communications

ISSUE

1

VOLUME

5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms4910

DOI

http://dx.doi.org/10.1038/ncomms4910

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037572327

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24852680


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryu", 
        "givenName": "Kwang-Su", 
        "id": "sg:person.01206731747.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206731747.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "See-Hun", 
        "id": "sg:person.01313617512.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313617512.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Luc", 
        "id": "sg:person.01011555363.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011555363.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parkin", 
        "givenName": "Stuart S. P.", 
        "id": "sg:person.07706243232.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706243232.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1594841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008497141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/apex.3.083001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012573250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.216601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014227347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.216601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014227347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.096602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017455943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.096602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017455943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/100/57002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018672975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.026601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018684130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.026601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018684130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.166601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019838950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.166601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019838950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020087497", 
          "https://doi.org/10.1038/nmat3020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10452-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021678993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022651800", 
          "https://doi.org/10.1038/nmat2961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.174405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023875953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.174405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023875953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025553648", 
          "https://doi.org/10.1038/nmat3675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/78/57007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025680436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027249833", 
          "https://doi.org/10.1038/nnano.2013.145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.165117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029900339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.165117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029900339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032728699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032728699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043534138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043534138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047913674", 
          "https://doi.org/10.1038/nnano.2013.102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.333530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057938154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3517131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057966237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060620426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060620426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.037203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.037203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.037204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.037204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/apex.5.093006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063032061"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "Domain walls can be driven by current at very high speeds in nanowires formed from ultra-thin, perpendicularly magnetized cobalt layers and cobalt/nickel multilayers deposited on platinum underlayers due to a chiral spin torque. An important feature of this torque is a magnetic chiral exchange field that each domain wall senses and that can be measured by the applied magnetic field amplitude along the nanowire where the domain walls stop moving irrespective of the magnitude of the current. Here we show that this torque is manifested when the magnetic layer is interfaced with metals that display a large proximity-induced magnetization, including iridium, palladium and platinum but not gold. A correlation between the strength of the chiral spin torque and the proximity-induced magnetic moment is demonstrated by interface engineering using atomically thin dusting layers. High domain velocities are found where there are large proximity-induced magnetizations in the interfaced metal layers. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms4910", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Chiral spin torque arising from proximity-induced magnetization", 
    "pagination": "3910", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b2fb2711bb98c4e31bfda95e7f735d4d01de99723f8a297fd7a1c8ed0ccb26bc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24852680"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms4910"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037572327"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms4910", 
      "https://app.dimensions.ai/details/publication/pub.1037572327"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms4910"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms4910'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms4910'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms4910'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms4910'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms4910 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author N9f58d56fdc6143938b6fe8a40cee37d5
4 schema:citation sg:pub.10.1038/nature05093
5 sg:pub.10.1038/nmat2613
6 sg:pub.10.1038/nmat2961
7 sg:pub.10.1038/nmat3020
8 sg:pub.10.1038/nmat3675
9 sg:pub.10.1038/nnano.2013.102
10 sg:pub.10.1038/nnano.2013.145
11 https://doi.org/10.1016/0304-8853(96)00062-5
12 https://doi.org/10.1063/1.1594841
13 https://doi.org/10.1063/1.333530
14 https://doi.org/10.1063/1.3517131
15 https://doi.org/10.1103/physrev.120.91
16 https://doi.org/10.1103/physrevb.33.1572
17 https://doi.org/10.1103/physrevb.75.104431
18 https://doi.org/10.1103/physrevb.77.165117
19 https://doi.org/10.1103/physrevb.78.140403
20 https://doi.org/10.1103/physrevb.79.094422
21 https://doi.org/10.1103/physrevb.83.174405
22 https://doi.org/10.1103/physrevb.87.020402
23 https://doi.org/10.1103/physrevlett.103.166601
24 https://doi.org/10.1103/physrevlett.109.096602
25 https://doi.org/10.1103/physrevlett.111.216601
26 https://doi.org/10.1103/physrevlett.81.5229
27 https://doi.org/10.1103/physrevlett.83.1834
28 https://doi.org/10.1103/physrevlett.85.393
29 https://doi.org/10.1103/physrevlett.87.037203
30 https://doi.org/10.1103/physrevlett.92.077205
31 https://doi.org/10.1103/physrevlett.95.026601
32 https://doi.org/10.1103/physrevlett.98.037204
33 https://doi.org/10.1126/science.1108813
34 https://doi.org/10.1126/science.1145799
35 https://doi.org/10.1143/apex.3.083001
36 https://doi.org/10.1143/apex.5.093006
37 https://doi.org/10.1209/0295-5075/100/57002
38 https://doi.org/10.1209/0295-5075/78/57007
39 https://doi.org/10.1209/epl/i2004-10452-6
40 schema:datePublished 2014-12
41 schema:datePublishedReg 2014-12-01
42 schema:description Domain walls can be driven by current at very high speeds in nanowires formed from ultra-thin, perpendicularly magnetized cobalt layers and cobalt/nickel multilayers deposited on platinum underlayers due to a chiral spin torque. An important feature of this torque is a magnetic chiral exchange field that each domain wall senses and that can be measured by the applied magnetic field amplitude along the nanowire where the domain walls stop moving irrespective of the magnitude of the current. Here we show that this torque is manifested when the magnetic layer is interfaced with metals that display a large proximity-induced magnetization, including iridium, palladium and platinum but not gold. A correlation between the strength of the chiral spin torque and the proximity-induced magnetic moment is demonstrated by interface engineering using atomically thin dusting layers. High domain velocities are found where there are large proximity-induced magnetizations in the interfaced metal layers.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N55dfcef36f7041c0bab8838857ae1cf6
47 N92f3dd0894cf44719c3c82672102cd1a
48 sg:journal.1043282
49 schema:name Chiral spin torque arising from proximity-induced magnetization
50 schema:pagination 3910
51 schema:productId N30f49869586e43c6987c99e0d302544e
52 N4a7e6c81576f4bce9af930503c54c810
53 N7ed06c89f2694ef18e628dde5495296a
54 Na3d65977cfb5411b957a68593b4bfaf3
55 Nbb0749aefe50412aa2e4f081e236d264
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037572327
57 https://doi.org/10.1038/ncomms4910
58 schema:sdDatePublished 2019-04-10T20:35
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N2b1dc14e200b4954b1dea5864ffa0963
61 schema:url https://www.nature.com/articles/ncomms4910
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N1ff2ae23de6f4dac9da3379cabf0ea0c rdf:first sg:person.01011555363.08
66 rdf:rest N2f36737dd67f4a72a2332abd703283c0
67 N2b1dc14e200b4954b1dea5864ffa0963 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N2f36737dd67f4a72a2332abd703283c0 rdf:first sg:person.07706243232.47
70 rdf:rest rdf:nil
71 N30f49869586e43c6987c99e0d302544e schema:name doi
72 schema:value 10.1038/ncomms4910
73 rdf:type schema:PropertyValue
74 N4a7e6c81576f4bce9af930503c54c810 schema:name readcube_id
75 schema:value b2fb2711bb98c4e31bfda95e7f735d4d01de99723f8a297fd7a1c8ed0ccb26bc
76 rdf:type schema:PropertyValue
77 N55dfcef36f7041c0bab8838857ae1cf6 schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N7ed06c89f2694ef18e628dde5495296a schema:name nlm_unique_id
80 schema:value 101528555
81 rdf:type schema:PropertyValue
82 N92f3dd0894cf44719c3c82672102cd1a schema:volumeNumber 5
83 rdf:type schema:PublicationVolume
84 N9f58d56fdc6143938b6fe8a40cee37d5 rdf:first sg:person.01206731747.21
85 rdf:rest Nba73f1749fac49318bdc06c69b0caafd
86 Na3d65977cfb5411b957a68593b4bfaf3 schema:name pubmed_id
87 schema:value 24852680
88 rdf:type schema:PropertyValue
89 Nba73f1749fac49318bdc06c69b0caafd rdf:first sg:person.01313617512.58
90 rdf:rest N1ff2ae23de6f4dac9da3379cabf0ea0c
91 Nbb0749aefe50412aa2e4f081e236d264 schema:name dimensions_id
92 schema:value pub.1037572327
93 rdf:type schema:PropertyValue
94 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
95 schema:name Technology
96 rdf:type schema:DefinedTerm
97 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
98 schema:name Nanotechnology
99 rdf:type schema:DefinedTerm
100 sg:journal.1043282 schema:issn 2041-1723
101 schema:name Nature Communications
102 rdf:type schema:Periodical
103 sg:person.01011555363.08 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
104 schema:familyName Thomas
105 schema:givenName Luc
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011555363.08
107 rdf:type schema:Person
108 sg:person.01206731747.21 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
109 schema:familyName Ryu
110 schema:givenName Kwang-Su
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206731747.21
112 rdf:type schema:Person
113 sg:person.01313617512.58 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
114 schema:familyName Yang
115 schema:givenName See-Hun
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313617512.58
117 rdf:type schema:Person
118 sg:person.07706243232.47 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
119 schema:familyName Parkin
120 schema:givenName Stuart S. P.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706243232.47
122 rdf:type schema:Person
123 sg:pub.10.1038/nature05093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044280391
124 https://doi.org/10.1038/nature05093
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nmat2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005987470
127 https://doi.org/10.1038/nmat2613
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nmat2961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022651800
130 https://doi.org/10.1038/nmat2961
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nmat3020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020087497
133 https://doi.org/10.1038/nmat3020
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nmat3675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025553648
136 https://doi.org/10.1038/nmat3675
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nnano.2013.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047913674
139 https://doi.org/10.1038/nnano.2013.102
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nnano.2013.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027249833
142 https://doi.org/10.1038/nnano.2013.145
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.1594841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008497141
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.333530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057938154
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.3517131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057966237
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrev.120.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423562
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevb.33.1572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539246
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevb.75.104431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060620426
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.77.165117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029900339
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevb.78.140403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032728699
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevb.79.094422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627606
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.83.174405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023875953
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.87.020402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965027
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.103.166601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019838950
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.109.096602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017455943
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.111.216601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014227347
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.81.5229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818630
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.83.1834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043534138
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.85.393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822119
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.87.037203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823431
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.92.077205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052656212
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.95.026601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018684130
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.98.037204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833427
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1108813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451522
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1143/apex.3.083001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012573250
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1143/apex.5.093006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063032061
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1209/0295-5075/100/57002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018672975
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1209/0295-5075/78/57007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025680436
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1209/epl/i2004-10452-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678993
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.481551.c schema:alternateName IBM Research - Almaden
203 schema:name IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...