Quantum state majorization at the output of bosonic Gaussian channels View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

A. Mari, V. Giovannetti, A. S. Holevo

ABSTRACT

Quantum communication theory explores the implications of quantum mechanics to the tasks of information transmission. Many physical channels can be formally described as quantum Gaussian operations acting on bosonic quantum states. Depending on the input state and on the quality of the channel, the output suffers certain amount of noise. For a long time it has been conjectured, but never proved, that output states of Gaussian channels corresponding to coherent input signals are the less noisy ones (in the sense of a majorization criterion). Here we prove this conjecture. Specifically we show that every output state of a phase-insensitive Gaussian channel is majorized by the output state corresponding to a coherent input. The proof is based on the optimality of coherent states for the minimization of strictly concave output functionals. Moreover we show that coherent states are the unique optimizers. More... »

PAGES

3826

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms4826

DOI

http://dx.doi.org/10.1038/ncomms4826

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050601467

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24806909


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mari", 
        "givenName": "A.", 
        "id": "sg:person.01166013734.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166013734.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giovannetti", 
        "givenName": "V.", 
        "id": "sg:person.0751566121.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "Steklov Mathematical Institute, 119991 Moscow, Russia", 
            "National Research University Higher School of Economics (HSE), 101000 Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holevo", 
        "givenName": "A. S.", 
        "id": "sg:person.012742037634.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.108.110505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002063646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.110505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002063646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.032303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005554926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.032303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005554926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006938061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006938061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.012320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012940258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.012320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012940258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018624925", 
          "https://doi.org/10.1038/nphoton.2012.342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110273403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022441139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.052320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025595044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.052320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025595044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.1655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026171320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.1655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026171320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.173602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027653530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.173602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027653530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029564491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029564491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(66)90079-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030260759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.107901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031338168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.107901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031338168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031768393", 
          "https://doi.org/10.1038/nphoton.2013.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.030503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032418487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.030503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032418487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2010.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036419760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.040501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038138166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.040501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038138166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.88.044301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048516588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.88.044301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048516588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052867467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053243892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053243892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.50.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.50.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.651037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.720553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/529/10428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089199354"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "Quantum communication theory explores the implications of quantum mechanics to the tasks of information transmission. Many physical channels can be formally described as quantum Gaussian operations acting on bosonic quantum states. Depending on the input state and on the quality of the channel, the output suffers certain amount of noise. For a long time it has been conjectured, but never proved, that output states of Gaussian channels corresponding to coherent input signals are the less noisy ones (in the sense of a majorization criterion). Here we prove this conjecture. Specifically we show that every output state of a phase-insensitive Gaussian channel is majorized by the output state corresponding to a coherent input. The proof is based on the optimality of coherent states for the minimization of strictly concave output functionals. Moreover we show that coherent states are the unique optimizers. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms4826", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5346094", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Quantum state majorization at the output of bosonic Gaussian channels", 
    "pagination": "3826", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f10c2d18c72afaba9bd1a9b524e193eb172d1ca7ee2386f0a64dca6330d42dbe"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24806909"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms4826"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050601467"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms4826", 
      "https://app.dimensions.ai/details/publication/pub.1050601467"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000595.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms4826"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms4826'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms4826'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms4826'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms4826'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms4826 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N3a871e93dd674c0ea4783c2d045de125
4 schema:citation sg:pub.10.1038/nphoton.2012.342
5 sg:pub.10.1038/nphoton.2013.193
6 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
7 https://doi.org/10.1016/0003-4916(66)90079-0
8 https://doi.org/10.1016/j.jfa.2010.08.018
9 https://doi.org/10.1088/1751-8113/43/41/415305
10 https://doi.org/10.1090/conm/529/10428
11 https://doi.org/10.1103/physreva.54.3824
12 https://doi.org/10.1103/physreva.63.032312
13 https://doi.org/10.1103/physreva.69.052320
14 https://doi.org/10.1103/physreva.70.032315
15 https://doi.org/10.1103/physreva.71.012320
16 https://doi.org/10.1103/physreva.76.032303
17 https://doi.org/10.1103/physreva.88.044301
18 https://doi.org/10.1103/physrevlett.108.110505
19 https://doi.org/10.1103/physrevlett.110.040501
20 https://doi.org/10.1103/physrevlett.111.030503
21 https://doi.org/10.1103/physrevlett.91.107901
22 https://doi.org/10.1103/physrevlett.94.173602
23 https://doi.org/10.1103/revmodphys.50.221
24 https://doi.org/10.1103/revmodphys.66.481
25 https://doi.org/10.1103/revmodphys.77.513
26 https://doi.org/10.1103/revmodphys.84.1655
27 https://doi.org/10.1103/revmodphys.84.621
28 https://doi.org/10.1109/18.651037
29 https://doi.org/10.1109/18.720553
30 https://doi.org/10.1515/9783110273403
31 schema:datePublished 2014-12
32 schema:datePublishedReg 2014-12-01
33 schema:description Quantum communication theory explores the implications of quantum mechanics to the tasks of information transmission. Many physical channels can be formally described as quantum Gaussian operations acting on bosonic quantum states. Depending on the input state and on the quality of the channel, the output suffers certain amount of noise. For a long time it has been conjectured, but never proved, that output states of Gaussian channels corresponding to coherent input signals are the less noisy ones (in the sense of a majorization criterion). Here we prove this conjecture. Specifically we show that every output state of a phase-insensitive Gaussian channel is majorized by the output state corresponding to a coherent input. The proof is based on the optimality of coherent states for the minimization of strictly concave output functionals. Moreover we show that coherent states are the unique optimizers.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N401934a65fde4a5fa7b7b485d5c02bb0
38 N52b951adc09442ed8ea2e607cd8d69ca
39 sg:journal.1043282
40 schema:name Quantum state majorization at the output of bosonic Gaussian channels
41 schema:pagination 3826
42 schema:productId N78107905e56c4f979c1194d4cfebaa72
43 N7c3cc69cd07b42e0afacf8e36218cf06
44 Naf14e3fc7e9340cc9a095a95b01479a1
45 Nb62cff2de71645e7b270519adb1c5edb
46 Nd266defff112468e82c78d9b7d6e6bcb
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050601467
48 https://doi.org/10.1038/ncomms4826
49 schema:sdDatePublished 2019-04-10T13:31
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N86599c5470fc4780a2c1793a2c0dd00b
52 schema:url https://www.nature.com/articles/ncomms4826
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N3a871e93dd674c0ea4783c2d045de125 rdf:first sg:person.01166013734.75
57 rdf:rest Nb5ee4f9a3118410195e57779969e5e3c
58 N401934a65fde4a5fa7b7b485d5c02bb0 schema:volumeNumber 5
59 rdf:type schema:PublicationVolume
60 N51bfb9e0e6aa41ca8b3a24f89a85e745 schema:name NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy
61 rdf:type schema:Organization
62 N52b951adc09442ed8ea2e607cd8d69ca schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N78107905e56c4f979c1194d4cfebaa72 schema:name pubmed_id
65 schema:value 24806909
66 rdf:type schema:PropertyValue
67 N7c3cc69cd07b42e0afacf8e36218cf06 schema:name readcube_id
68 schema:value f10c2d18c72afaba9bd1a9b524e193eb172d1ca7ee2386f0a64dca6330d42dbe
69 rdf:type schema:PropertyValue
70 N86599c5470fc4780a2c1793a2c0dd00b schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Naf14e3fc7e9340cc9a095a95b01479a1 schema:name dimensions_id
73 schema:value pub.1050601467
74 rdf:type schema:PropertyValue
75 Naf637ed9106e42ab9b71df3e89e09aeb schema:name NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy
76 rdf:type schema:Organization
77 Nb5ee4f9a3118410195e57779969e5e3c rdf:first sg:person.0751566121.99
78 rdf:rest Nf53443d1e00343ddb6818911b9d35294
79 Nb62cff2de71645e7b270519adb1c5edb schema:name doi
80 schema:value 10.1038/ncomms4826
81 rdf:type schema:PropertyValue
82 Nd266defff112468e82c78d9b7d6e6bcb schema:name nlm_unique_id
83 schema:value 101528555
84 rdf:type schema:PropertyValue
85 Nf53443d1e00343ddb6818911b9d35294 rdf:first sg:person.012742037634.56
86 rdf:rest rdf:nil
87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
91 schema:name Quantum Physics
92 rdf:type schema:DefinedTerm
93 sg:grant.5346094 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms4826
94 rdf:type schema:MonetaryGrant
95 sg:journal.1043282 schema:issn 2041-1723
96 schema:name Nature Communications
97 rdf:type schema:Periodical
98 sg:person.01166013734.75 schema:affiliation N51bfb9e0e6aa41ca8b3a24f89a85e745
99 schema:familyName Mari
100 schema:givenName A.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166013734.75
102 rdf:type schema:Person
103 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
104 schema:familyName Holevo
105 schema:givenName A. S.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
107 rdf:type schema:Person
108 sg:person.0751566121.99 schema:affiliation Naf637ed9106e42ab9b71df3e89e09aeb
109 schema:familyName Giovannetti
110 schema:givenName V.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99
112 rdf:type schema:Person
113 sg:pub.10.1038/nphoton.2012.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018624925
114 https://doi.org/10.1038/nphoton.2012.342
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nphoton.2013.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031768393
117 https://doi.org/10.1038/nphoton.2013.193
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0003-4916(66)90079-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030260759
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jfa.2010.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036419760
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1088/1751-8113/43/41/415305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006938061
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1090/conm/529/10428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089199354
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreva.54.3824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022782738
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreva.63.032312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496978
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physreva.69.052320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025595044
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physreva.70.032315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010065014
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreva.71.012320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012940258
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physreva.76.032303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005554926
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreva.88.044301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048516588
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.108.110505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002063646
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.110.040501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038138166
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.111.030503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032418487
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.91.107901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031338168
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.94.173602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027653530
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/revmodphys.50.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838892
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/revmodphys.66.481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839325
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/revmodphys.77.513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053243892
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/revmodphys.84.1655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026171320
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/revmodphys.84.621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029564491
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/18.651037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100566
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/18.720553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100785
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1515/9783110273403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022441139
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.410682.9 schema:alternateName National Research University Higher School of Economics
170 schema:name National Research University Higher School of Economics (HSE), 101000 Moscow, Russia
171 Steklov Mathematical Institute, 119991 Moscow, Russia
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...