Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-02-05

AUTHORS

Meng Li, Brandy M. Toner, Brett J. Baker, John A. Breier, Cody S. Sheik, Gregory J. Dick

ABSTRACT

Deep-sea hydrothermal vents are a significant source of oceanic iron. Although hydrothermal iron rapidly precipitates as inorganic minerals on mixing with seawater, it can be stabilized by organic matter and dispersed more widely than previously recognized. The nature and source of this organic matter is unknown. Here we show that microbial genes involved in cellular iron uptake are highly expressed in the Guaymas Basin deep-sea hydrothermal plume. The nature of these microbial iron transporters, taken together with the low concentration of dissolved iron and abundance of particulate iron in the plume, indicates that iron minerals are the target for this microbial scavenging and uptake. Our findings indicate that cellular iron uptake is a major process in plume microbial communities and suggest new mechanisms for generating Fe–C complexes. This ‘microbial iron pump’ could represent an important mode of converting hydrothermal iron into bioavailable forms that can be dispersed throughout the oceans. More... »

PAGES

3192

References to SciGraph publications

  • 2011-02-20. Metal flux from hydrothermal vents increased by organic complexation in NATURE GEOSCIENCE
  • 1989-06. Hydroxamate-siderophore production and utilization by marine eubacteria in CURRENT MICROBIOLOGY
  • 2010-03-14. Hydrothermal contribution to the oceanic dissolved iron inventory in NATURE GEOSCIENCE
  • 2011-05-19. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data in GENOME BIOLOGY
  • 2010-09-26. The biogeochemical cycle of iron in the ocean in NATURE GEOSCIENCE
  • 2009-02-08. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume in NATURE GEOSCIENCE
  • 2012-06-14. Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2012-06-14. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2008-07-31. Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 1998-11. Iron acquisition by photosynthetic marine phytoplankton from ingested bacteria in NATURE
  • 2001-09. Photochemical cycling of iron in the surface ocean mediated by microbial iron(iii)-binding ligands in NATURE
  • 2013-05-23. Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2012-07-18. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms4192

    DOI

    http://dx.doi.org/10.1038/ncomms4192

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050322991

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24496055


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geochemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrothermal Vents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Iron", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbial Consortia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thermodynamics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, Michigan, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, Michigan, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Meng", 
            "id": "sg:person.0715634401.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715634401.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, 55108, St. Paul, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, 55108, St. Paul, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Toner", 
            "givenName": "Brandy M.", 
            "id": "sg:person.01036756211.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036756211.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, Michigan, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, Michigan, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baker", 
            "givenName": "Brett J.", 
            "id": "sg:person.0651757375.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651757375.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Woods Hole Oceanographic Institution, 02543, Woods Hole, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.56466.37", 
              "name": [
                "Woods Hole Oceanographic Institution, 02543, Woods Hole, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Breier", 
            "givenName": "John A.", 
            "id": "sg:person.0717100154.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717100154.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, Michigan, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, Michigan, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sheik", 
            "givenName": "Cody S.", 
            "id": "sg:person.01323427756.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323427756.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center of Computational Medicine and Bioinformatics, University of Michigan, 48109, Ann Arbor, Michigan, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, Michigan, USA", 
                "Department of Ecology and Evolutionary Biology, University of Michigan, 48109, Ann Arbor, Michigan, USA", 
                "Center of Computational Medicine and Bioinformatics, University of Michigan, 48109, Ann Arbor, Michigan, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dick", 
            "givenName": "Gregory J.", 
            "id": "sg:person.01030501116.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030501116.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ngeo818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009515622", 
              "https://doi.org/10.1038/ngeo818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023237752", 
              "https://doi.org/10.1038/ngeo964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019020756", 
              "https://doi.org/10.1038/ngeo1088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033045848", 
              "https://doi.org/10.1038/ismej.2008.74"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035843725", 
              "https://doi.org/10.1038/ismej.2012.63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038896328", 
              "https://doi.org/10.1038/nature11229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013864277", 
              "https://doi.org/10.1038/ismej.2012.64"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01571131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004093771", 
              "https://doi.org/10.1007/bf01571131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35096545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052198359", 
              "https://doi.org/10.1038/35096545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-5-r44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000326175", 
              "https://doi.org/10.1186/gb-2011-12-5-r44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005981456", 
              "https://doi.org/10.1038/ismej.2013.85"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/24352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040015942", 
              "https://doi.org/10.1038/24352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031301100", 
              "https://doi.org/10.1038/ngeo433"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-02-05", 
        "datePublishedReg": "2014-02-05", 
        "description": "Deep-sea hydrothermal vents are a significant source of oceanic iron. Although hydrothermal iron rapidly precipitates as inorganic minerals on mixing with seawater, it can be stabilized by organic matter and dispersed more widely than previously recognized. The nature and source of this organic matter is unknown. Here we show that microbial genes involved in cellular iron uptake are highly expressed in the Guaymas Basin deep-sea hydrothermal plume. The nature of these microbial iron transporters, taken together with the low concentration of dissolved iron and abundance of particulate iron in the plume, indicates that iron minerals are the target for this microbial scavenging and uptake. Our findings indicate that cellular iron uptake is a major process in plume microbial communities and suggest new mechanisms for generating Fe\u2013C complexes. This \u2018microbial iron pump\u2019 could represent an important mode of converting hydrothermal iron into bioavailable forms that can be dispersed throughout the oceans.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms4192", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3117584", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "deep-sea hydrothermal vents", 
          "hydrothermal iron", 
          "hydrothermal vents", 
          "organic matter", 
          "deep-sea hydrothermal plume", 
          "cellular iron uptake", 
          "iron uptake", 
          "microbial iron uptake", 
          "oceanic iron", 
          "hydrothermal plumes", 
          "particulate iron", 
          "dissolved iron", 
          "iron minerals", 
          "major processes", 
          "inorganic minerals", 
          "bioavailable forms", 
          "microbial genes", 
          "significant source", 
          "microbial communities", 
          "plume", 
          "vents", 
          "minerals", 
          "iron transporter", 
          "important mode", 
          "iron", 
          "Ocean", 
          "seawater", 
          "matter", 
          "source", 
          "new mechanism", 
          "uptake", 
          "Fe", 
          "genes", 
          "abundance", 
          "scavenging", 
          "transporters", 
          "low concentrations", 
          "mechanism", 
          "complexes", 
          "target", 
          "concentration", 
          "nature", 
          "community", 
          "process", 
          "form", 
          "mode", 
          "findings", 
          "pump"
        ], 
        "name": "Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents", 
        "pagination": "3192", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050322991"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms4192"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24496055"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms4192", 
          "https://app.dimensions.ai/details/publication/pub.1050322991"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_641.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms4192"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms4192'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms4192'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms4192'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms4192'


     

    This table displays all metadata directly associated to this object as RDF triples.

    235 TRIPLES      22 PREDICATES      94 URIs      72 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms4192 schema:about N1b194e3b4e4441539d76dafedbdb6329
    2 N468954cd872d4faf99be1655bfd816fc
    3 N983c8931b5374827b608b86cd8254782
    4 Nad859a6082034c889230febd9d530a9d
    5 Ndad1a63cac3747a7b8d183f57cec7fd8
    6 Nec0294bd2b084daf9d61934d35e1d907
    7 anzsrc-for:04
    8 anzsrc-for:0402
    9 anzsrc-for:0405
    10 schema:author N06c6710f33a84d318d6aa9c67b36463c
    11 schema:citation sg:pub.10.1007/bf01571131
    12 sg:pub.10.1038/24352
    13 sg:pub.10.1038/35096545
    14 sg:pub.10.1038/ismej.2008.74
    15 sg:pub.10.1038/ismej.2012.63
    16 sg:pub.10.1038/ismej.2012.64
    17 sg:pub.10.1038/ismej.2013.85
    18 sg:pub.10.1038/nature11229
    19 sg:pub.10.1038/ngeo1088
    20 sg:pub.10.1038/ngeo433
    21 sg:pub.10.1038/ngeo818
    22 sg:pub.10.1038/ngeo964
    23 sg:pub.10.1186/gb-2011-12-5-r44
    24 schema:datePublished 2014-02-05
    25 schema:datePublishedReg 2014-02-05
    26 schema:description Deep-sea hydrothermal vents are a significant source of oceanic iron. Although hydrothermal iron rapidly precipitates as inorganic minerals on mixing with seawater, it can be stabilized by organic matter and dispersed more widely than previously recognized. The nature and source of this organic matter is unknown. Here we show that microbial genes involved in cellular iron uptake are highly expressed in the Guaymas Basin deep-sea hydrothermal plume. The nature of these microbial iron transporters, taken together with the low concentration of dissolved iron and abundance of particulate iron in the plume, indicates that iron minerals are the target for this microbial scavenging and uptake. Our findings indicate that cellular iron uptake is a major process in plume microbial communities and suggest new mechanisms for generating Fe–C complexes. This ‘microbial iron pump’ could represent an important mode of converting hydrothermal iron into bioavailable forms that can be dispersed throughout the oceans.
    27 schema:genre article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N698c4afa74dd4b8188ceed028a36b47b
    31 Nc1bae3aaefdb4b03956c55389886d586
    32 sg:journal.1043282
    33 schema:keywords Fe
    34 Ocean
    35 abundance
    36 bioavailable forms
    37 cellular iron uptake
    38 community
    39 complexes
    40 concentration
    41 deep-sea hydrothermal plume
    42 deep-sea hydrothermal vents
    43 dissolved iron
    44 findings
    45 form
    46 genes
    47 hydrothermal iron
    48 hydrothermal plumes
    49 hydrothermal vents
    50 important mode
    51 inorganic minerals
    52 iron
    53 iron minerals
    54 iron transporter
    55 iron uptake
    56 low concentrations
    57 major processes
    58 matter
    59 mechanism
    60 microbial communities
    61 microbial genes
    62 microbial iron uptake
    63 minerals
    64 mode
    65 nature
    66 new mechanism
    67 oceanic iron
    68 organic matter
    69 particulate iron
    70 plume
    71 process
    72 pump
    73 scavenging
    74 seawater
    75 significant source
    76 source
    77 target
    78 transporters
    79 uptake
    80 vents
    81 schema:name Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents
    82 schema:pagination 3192
    83 schema:productId N3fdbc5a623d94db4be15ebd6160ed4bb
    84 N7621aa3ed41a41469c2347f3d5028a48
    85 N8d8b1af7cf9d461a9373c75cf3861679
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050322991
    87 https://doi.org/10.1038/ncomms4192
    88 schema:sdDatePublished 2022-06-01T22:12
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher Nba48b0a8825f4291b7368725ab60ece8
    91 schema:url https://doi.org/10.1038/ncomms4192
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N06c6710f33a84d318d6aa9c67b36463c rdf:first sg:person.0715634401.25
    96 rdf:rest N45a2b93627164df993ad1f38f1900b60
    97 N08eecf2b8bce43f8af09796f4afcaa6a rdf:first sg:person.0717100154.32
    98 rdf:rest Nbd0ff0d77ab4459887f21a0830740a78
    99 N0b6ceaca054e41678d5f1105d1b5b2e2 rdf:first sg:person.0651757375.15
    100 rdf:rest N08eecf2b8bce43f8af09796f4afcaa6a
    101 N1b194e3b4e4441539d76dafedbdb6329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Microbial Consortia
    103 rdf:type schema:DefinedTerm
    104 N3fdbc5a623d94db4be15ebd6160ed4bb schema:name doi
    105 schema:value 10.1038/ncomms4192
    106 rdf:type schema:PropertyValue
    107 N45a2b93627164df993ad1f38f1900b60 rdf:first sg:person.01036756211.44
    108 rdf:rest N0b6ceaca054e41678d5f1105d1b5b2e2
    109 N468954cd872d4faf99be1655bfd816fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Transcriptome
    111 rdf:type schema:DefinedTerm
    112 N698c4afa74dd4b8188ceed028a36b47b schema:volumeNumber 5
    113 rdf:type schema:PublicationVolume
    114 N7621aa3ed41a41469c2347f3d5028a48 schema:name pubmed_id
    115 schema:value 24496055
    116 rdf:type schema:PropertyValue
    117 N8d8b1af7cf9d461a9373c75cf3861679 schema:name dimensions_id
    118 schema:value pub.1050322991
    119 rdf:type schema:PropertyValue
    120 N983c8931b5374827b608b86cd8254782 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Hydrothermal Vents
    122 rdf:type schema:DefinedTerm
    123 Na5369b270d1344a58a00c019970863a8 rdf:first sg:person.01030501116.39
    124 rdf:rest rdf:nil
    125 Nad859a6082034c889230febd9d530a9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Gene Expression Profiling
    127 rdf:type schema:DefinedTerm
    128 Nba48b0a8825f4291b7368725ab60ece8 schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 Nbd0ff0d77ab4459887f21a0830740a78 rdf:first sg:person.01323427756.09
    131 rdf:rest Na5369b270d1344a58a00c019970863a8
    132 Nc1bae3aaefdb4b03956c55389886d586 schema:issueNumber 1
    133 rdf:type schema:PublicationIssue
    134 Ndad1a63cac3747a7b8d183f57cec7fd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Thermodynamics
    136 rdf:type schema:DefinedTerm
    137 Nec0294bd2b084daf9d61934d35e1d907 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Iron
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Earth Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Geochemistry
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Oceanography
    148 rdf:type schema:DefinedTerm
    149 sg:grant.3117584 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms4192
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1043282 schema:issn 2041-1723
    152 schema:name Nature Communications
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.01030501116.39 schema:affiliation grid-institutes:grid.214458.e
    156 schema:familyName Dick
    157 schema:givenName Gregory J.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030501116.39
    159 rdf:type schema:Person
    160 sg:person.01036756211.44 schema:affiliation grid-institutes:grid.17635.36
    161 schema:familyName Toner
    162 schema:givenName Brandy M.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036756211.44
    164 rdf:type schema:Person
    165 sg:person.01323427756.09 schema:affiliation grid-institutes:grid.214458.e
    166 schema:familyName Sheik
    167 schema:givenName Cody S.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323427756.09
    169 rdf:type schema:Person
    170 sg:person.0651757375.15 schema:affiliation grid-institutes:grid.214458.e
    171 schema:familyName Baker
    172 schema:givenName Brett J.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651757375.15
    174 rdf:type schema:Person
    175 sg:person.0715634401.25 schema:affiliation grid-institutes:grid.214458.e
    176 schema:familyName Li
    177 schema:givenName Meng
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715634401.25
    179 rdf:type schema:Person
    180 sg:person.0717100154.32 schema:affiliation grid-institutes:grid.56466.37
    181 schema:familyName Breier
    182 schema:givenName John A.
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717100154.32
    184 rdf:type schema:Person
    185 sg:pub.10.1007/bf01571131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004093771
    186 https://doi.org/10.1007/bf01571131
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/24352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040015942
    189 https://doi.org/10.1038/24352
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/35096545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052198359
    192 https://doi.org/10.1038/35096545
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/ismej.2008.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033045848
    195 https://doi.org/10.1038/ismej.2008.74
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/ismej.2012.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035843725
    198 https://doi.org/10.1038/ismej.2012.63
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/ismej.2012.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013864277
    201 https://doi.org/10.1038/ismej.2012.64
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/ismej.2013.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005981456
    204 https://doi.org/10.1038/ismej.2013.85
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature11229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038896328
    207 https://doi.org/10.1038/nature11229
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/ngeo1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019020756
    210 https://doi.org/10.1038/ngeo1088
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/ngeo433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031301100
    213 https://doi.org/10.1038/ngeo433
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/ngeo818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009515622
    216 https://doi.org/10.1038/ngeo818
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/ngeo964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023237752
    219 https://doi.org/10.1038/ngeo964
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/gb-2011-12-5-r44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000326175
    222 https://doi.org/10.1186/gb-2011-12-5-r44
    223 rdf:type schema:CreativeWork
    224 grid-institutes:grid.17635.36 schema:alternateName Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, 55108, St. Paul, Minnesota, USA
    225 schema:name Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, 55108, St. Paul, Minnesota, USA
    226 rdf:type schema:Organization
    227 grid-institutes:grid.214458.e schema:alternateName Center of Computational Medicine and Bioinformatics, University of Michigan, 48109, Ann Arbor, Michigan, USA
    228 Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, Michigan, USA
    229 schema:name Center of Computational Medicine and Bioinformatics, University of Michigan, 48109, Ann Arbor, Michigan, USA
    230 Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, Michigan, USA
    231 Department of Ecology and Evolutionary Biology, University of Michigan, 48109, Ann Arbor, Michigan, USA
    232 rdf:type schema:Organization
    233 grid-institutes:grid.56466.37 schema:alternateName Woods Hole Oceanographic Institution, 02543, Woods Hole, Massachusetts, USA
    234 schema:name Woods Hole Oceanographic Institution, 02543, Woods Hole, Massachusetts, USA
    235 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...