Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01-20

AUTHORS

Zachary A. Piazza, Han-Shi Hu, Wei-Li Li, Ya-Fan Zhao, Jun Li, Lai-Sheng Wang

ABSTRACT

Boron is carbon’s neighbour in the periodic table and has similar valence orbitals. However, boron cannot form graphene-like structures with a honeycomb hexagonal framework because of its electron deficiency. Computational studies suggest that extended boron sheets with partially filled hexagonal holes are stable; however, there has been no experimental evidence for such atom-thin boron nanostructures. Here, we show experimentally and theoretically that B36 is a highly stable quasiplanar boron cluster with a central hexagonal hole, providing the first experimental evidence that single-atom layer boron sheets with hexagonal vacancies are potentially viable. Photoelectron spectroscopy of B36− reveals a relatively simple spectrum, suggesting a symmetric cluster. Global minimum searches for B36− lead to a quasiplanar structure with a central hexagonal hole. Neutral B36 is the smallest boron cluster to have sixfold symmetry and a perfect hexagonal vacancy, and it can be viewed as a potential basis for extended two-dimensional boron sheets. More... »

PAGES

3113

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms4113

DOI

http://dx.doi.org/10.1038/ncomms4113

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027158649

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24445427


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Brown University, 02912, Providence, Rhode Island, USA", 
          "id": "http://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "Department of Chemistry, Brown University, 02912, Providence, Rhode Island, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piazza", 
        "givenName": "Zachary A.", 
        "id": "sg:person.01127225573.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127225573.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Han-Shi", 
        "id": "sg:person.01062141330.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062141330.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Brown University, 02912, Providence, Rhode Island, USA", 
          "id": "http://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "Department of Chemistry, Brown University, 02912, Providence, Rhode Island, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wei-Li", 
        "id": "sg:person.01243454173.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243454173.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Ya-Fan", 
        "id": "sg:person.01040616006.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040616006.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jun", 
        "id": "sg:person.01357735055.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357735055.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Brown University, 02912, Providence, Rhode Island, USA", 
          "id": "http://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "Department of Chemistry, Brown University, 02912, Providence, Rhode Island, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Lai-Sheng", 
        "id": "sg:person.01016640273.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016640273.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/354056a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016485857", 
          "https://doi.org/10.1038/354056a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028207793", 
          "https://doi.org/10.1038/nchem.534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046093806", 
          "https://doi.org/10.1038/nmat1012"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-01-20", 
    "datePublishedReg": "2014-01-20", 
    "description": "Boron is carbon\u2019s neighbour in the periodic table and has similar valence orbitals. However, boron cannot form graphene-like structures with a honeycomb hexagonal framework because of its electron deficiency. Computational studies suggest that extended boron sheets with partially filled hexagonal holes are stable; however, there has been no experimental evidence for such atom-thin boron nanostructures. Here, we show experimentally and theoretically that B36 is a highly stable quasiplanar boron cluster with a central hexagonal hole, providing the first experimental evidence that single-atom layer boron sheets with hexagonal vacancies are potentially viable. Photoelectron spectroscopy of B36\u2212 reveals a relatively simple spectrum, suggesting a symmetric cluster. Global minimum searches for B36\u2212 lead to a quasiplanar structure with a central hexagonal hole. Neutral B36 is the smallest boron cluster to have sixfold symmetry and a perfect hexagonal vacancy, and it can be viewed as a potential basis for extended two-dimensional boron sheets.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms4113", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6978144", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3482904", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3000154", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5003035", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "central hexagonal hole", 
      "hexagonal vacancy", 
      "hexagonal holes", 
      "boron sheets", 
      "graphene-like structure", 
      "two-dimensional boron sheets", 
      "small boron clusters", 
      "valence orbitals", 
      "carbon neighbours", 
      "photoelectron spectroscopy", 
      "quasiplanar structures", 
      "sixfold symmetry", 
      "periodic table", 
      "first experimental evidence", 
      "experimental evidence", 
      "global minimum search", 
      "holes", 
      "simple spectrum", 
      "symmetric clusters", 
      "boron clusters", 
      "electron deficiency", 
      "vacancies", 
      "boron", 
      "minimum search", 
      "hexagonal framework", 
      "computational study", 
      "orbitals", 
      "spectroscopy", 
      "spectra", 
      "symmetry", 
      "clusters", 
      "sheets", 
      "structure", 
      "B36", 
      "neighbours", 
      "potential basis", 
      "basis", 
      "search", 
      "evidence", 
      "framework", 
      "table", 
      "study", 
      "deficiency", 
      "similar valence orbitals", 
      "honeycomb hexagonal framework", 
      "such atom-thin boron", 
      "atom-thin boron", 
      "stable quasiplanar boron", 
      "quasiplanar boron", 
      "single-atom layer boron sheets", 
      "layer boron sheets", 
      "Neutral B36", 
      "perfect hexagonal vacancy", 
      "Planar hexagonal B36", 
      "hexagonal B36", 
      "extended single-atom layer boron sheets"
    ], 
    "name": "Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets", 
    "pagination": "3113", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027158649"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms4113"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24445427"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms4113", 
      "https://app.dimensions.ai/details/publication/pub.1027158649"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_638.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms4113"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms4113'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms4113'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms4113'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms4113'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      22 PREDICATES      85 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms4113 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nae6367768ae544ab807bc42a6238c9af
4 schema:citation sg:pub.10.1038/354056a0
5 sg:pub.10.1038/nchem.534
6 sg:pub.10.1038/nmat1012
7 schema:datePublished 2014-01-20
8 schema:datePublishedReg 2014-01-20
9 schema:description Boron is carbon’s neighbour in the periodic table and has similar valence orbitals. However, boron cannot form graphene-like structures with a honeycomb hexagonal framework because of its electron deficiency. Computational studies suggest that extended boron sheets with partially filled hexagonal holes are stable; however, there has been no experimental evidence for such atom-thin boron nanostructures. Here, we show experimentally and theoretically that B36 is a highly stable quasiplanar boron cluster with a central hexagonal hole, providing the first experimental evidence that single-atom layer boron sheets with hexagonal vacancies are potentially viable. Photoelectron spectroscopy of B36− reveals a relatively simple spectrum, suggesting a symmetric cluster. Global minimum searches for B36− lead to a quasiplanar structure with a central hexagonal hole. Neutral B36 is the smallest boron cluster to have sixfold symmetry and a perfect hexagonal vacancy, and it can be viewed as a potential basis for extended two-dimensional boron sheets.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N788d0d42c6d84b88b5a7715138ae8804
14 Nf0ef357fb48145d3bf23268a3b26dc2c
15 sg:journal.1043282
16 schema:keywords B36
17 Neutral B36
18 Planar hexagonal B36
19 atom-thin boron
20 basis
21 boron
22 boron clusters
23 boron sheets
24 carbon neighbours
25 central hexagonal hole
26 clusters
27 computational study
28 deficiency
29 electron deficiency
30 evidence
31 experimental evidence
32 extended single-atom layer boron sheets
33 first experimental evidence
34 framework
35 global minimum search
36 graphene-like structure
37 hexagonal B36
38 hexagonal framework
39 hexagonal holes
40 hexagonal vacancy
41 holes
42 honeycomb hexagonal framework
43 layer boron sheets
44 minimum search
45 neighbours
46 orbitals
47 perfect hexagonal vacancy
48 periodic table
49 photoelectron spectroscopy
50 potential basis
51 quasiplanar boron
52 quasiplanar structures
53 search
54 sheets
55 similar valence orbitals
56 simple spectrum
57 single-atom layer boron sheets
58 sixfold symmetry
59 small boron clusters
60 spectra
61 spectroscopy
62 stable quasiplanar boron
63 structure
64 study
65 such atom-thin boron
66 symmetric clusters
67 symmetry
68 table
69 two-dimensional boron sheets
70 vacancies
71 valence orbitals
72 schema:name Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets
73 schema:pagination 3113
74 schema:productId N442a027f8b3c4e6b9acdd4a82b5c97cb
75 Ndaaef2be24474ff5acc39491f93e00da
76 Nfbde33db3a4841b9964f57e8d657be1e
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027158649
78 https://doi.org/10.1038/ncomms4113
79 schema:sdDatePublished 2022-01-01T18:33
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N46fde3710cac41739309f246d0c00f81
82 schema:url https://doi.org/10.1038/ncomms4113
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0dd1329cfaec40d98b5ddfe6f9992002 rdf:first sg:person.01016640273.97
87 rdf:rest rdf:nil
88 N38cc84dceb994de89173ae1a29d8c74c rdf:first sg:person.01062141330.58
89 rdf:rest N3bc53f3b6ced4369ad36d67154e2cda8
90 N3bc53f3b6ced4369ad36d67154e2cda8 rdf:first sg:person.01243454173.88
91 rdf:rest N63afbe6b38af4236b515a7b1e627e201
92 N442a027f8b3c4e6b9acdd4a82b5c97cb schema:name doi
93 schema:value 10.1038/ncomms4113
94 rdf:type schema:PropertyValue
95 N46fde3710cac41739309f246d0c00f81 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N63afbe6b38af4236b515a7b1e627e201 rdf:first sg:person.01040616006.35
98 rdf:rest Nd2b0c96f4e1748d7b8e9f520903cb8dd
99 N788d0d42c6d84b88b5a7715138ae8804 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 Nae6367768ae544ab807bc42a6238c9af rdf:first sg:person.01127225573.61
102 rdf:rest N38cc84dceb994de89173ae1a29d8c74c
103 Nd2b0c96f4e1748d7b8e9f520903cb8dd rdf:first sg:person.01357735055.54
104 rdf:rest N0dd1329cfaec40d98b5ddfe6f9992002
105 Ndaaef2be24474ff5acc39491f93e00da schema:name pubmed_id
106 schema:value 24445427
107 rdf:type schema:PropertyValue
108 Nf0ef357fb48145d3bf23268a3b26dc2c schema:volumeNumber 5
109 rdf:type schema:PublicationVolume
110 Nfbde33db3a4841b9964f57e8d657be1e schema:name dimensions_id
111 schema:value pub.1027158649
112 rdf:type schema:PropertyValue
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
117 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
118 rdf:type schema:DefinedTerm
119 sg:grant.3000154 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms4113
120 rdf:type schema:MonetaryGrant
121 sg:grant.3482904 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms4113
122 rdf:type schema:MonetaryGrant
123 sg:grant.5003035 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms4113
124 rdf:type schema:MonetaryGrant
125 sg:grant.6978144 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms4113
126 rdf:type schema:MonetaryGrant
127 sg:journal.1043282 schema:issn 2041-1723
128 schema:name Nature Communications
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.01016640273.97 schema:affiliation grid-institutes:grid.40263.33
132 schema:familyName Wang
133 schema:givenName Lai-Sheng
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016640273.97
135 rdf:type schema:Person
136 sg:person.01040616006.35 schema:affiliation grid-institutes:grid.12527.33
137 schema:familyName Zhao
138 schema:givenName Ya-Fan
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040616006.35
140 rdf:type schema:Person
141 sg:person.01062141330.58 schema:affiliation grid-institutes:grid.12527.33
142 schema:familyName Hu
143 schema:givenName Han-Shi
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062141330.58
145 rdf:type schema:Person
146 sg:person.01127225573.61 schema:affiliation grid-institutes:grid.40263.33
147 schema:familyName Piazza
148 schema:givenName Zachary A.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127225573.61
150 rdf:type schema:Person
151 sg:person.01243454173.88 schema:affiliation grid-institutes:grid.40263.33
152 schema:familyName Li
153 schema:givenName Wei-Li
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243454173.88
155 rdf:type schema:Person
156 sg:person.01357735055.54 schema:affiliation grid-institutes:grid.12527.33
157 schema:familyName Li
158 schema:givenName Jun
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357735055.54
160 rdf:type schema:Person
161 sg:pub.10.1038/354056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016485857
162 https://doi.org/10.1038/354056a0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nchem.534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028207793
165 https://doi.org/10.1038/nchem.534
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nmat1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046093806
168 https://doi.org/10.1038/nmat1012
169 rdf:type schema:CreativeWork
170 grid-institutes:grid.12527.33 schema:alternateName Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China
171 schema:name Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084, Beijing, China
172 rdf:type schema:Organization
173 grid-institutes:grid.40263.33 schema:alternateName Department of Chemistry, Brown University, 02912, Providence, Rhode Island, USA
174 schema:name Department of Chemistry, Brown University, 02912, Providence, Rhode Island, USA
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...