An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-10-07

AUTHORS

Nicholas F. Chilton, David Collison, Eric J. L. McInnes, Richard E. P. Winpenny, Alessandro Soncini

ABSTRACT

Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±15/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes. More... »

PAGES

2551

References to SciGraph publications

  • 2013-07-14. Magnetic relaxation pathways in lanthanide single-molecule magnets in NATURE CHEMISTRY
  • 2011-09-23. Anisotropic dysprosium in NATURE CHEMISTRY
  • 1982-12. Asphericity of 4f-shells in their Hund's rule ground states in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms3551

    DOI

    http://dx.doi.org/10.1038/ncomms3551

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033338304

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24096593


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, M19 3PL, Manchester, UK", 
              "id": "http://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, M19 3PL, Manchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chilton", 
            "givenName": "Nicholas F.", 
            "id": "sg:person.01112641637.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112641637.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, M19 3PL, Manchester, UK", 
              "id": "http://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, M19 3PL, Manchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Collison", 
            "givenName": "David", 
            "id": "sg:person.01357224256.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357224256.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, M19 3PL, Manchester, UK", 
              "id": "http://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, M19 3PL, Manchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McInnes", 
            "givenName": "Eric J. L.", 
            "id": "sg:person.015541514657.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015541514657.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, M19 3PL, Manchester, UK", 
              "id": "http://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, M19 3PL, Manchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Winpenny", 
            "givenName": "Richard E. P.", 
            "id": "sg:person.016552617421.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552617421.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemistry, University of Melbourne, 3010, Parkville, Victoria, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "School of Chemistry, University of Melbourne, 3010, Parkville, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soncini", 
            "givenName": "Alessandro", 
            "id": "sg:person.0646127545.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646127545.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nchem.1707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029037118", 
              "https://doi.org/10.1038/nchem.1707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003757257", 
              "https://doi.org/10.1038/nchem.1157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01321865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014112211", 
              "https://doi.org/10.1007/bf01321865"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-10-07", 
        "datePublishedReg": "2013-10-07", 
        "description": "Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=\u00b115/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms3551", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2758189", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "magnetic anisotropy", 
          "angular momentum quantum number", 
          "anisotropy axis", 
          "momentum quantum number", 
          "simple electrostatic method", 
          "high-level ab initio calculations", 
          "magnetic anisotropy axis", 
          "anisotropic electronic structure", 
          "electrostatic model", 
          "ab initio calculations", 
          "quantum numbers", 
          "quantum computing", 
          "ground state", 
          "electronic structure", 
          "initio calculations", 
          "dysprosium complexes", 
          "lower symmetry", 
          "electrostatic method", 
          "high symmetry", 
          "anisotropy", 
          "symmetry", 
          "lanthanide complexes", 
          "ray structure", 
          "polymetallic complexes", 
          "doublet", 
          "axis", 
          "calculations", 
          "structure", 
          "imaging", 
          "state", 
          "cell labeling", 
          "complexes", 
          "magnetic resonance imaging", 
          "model", 
          "determination", 
          "monometallic", 
          "intuitive strategy", 
          "resonance imaging", 
          "method", 
          "computing", 
          "number", 
          "observations", 
          "selection", 
          "absence", 
          "strategies", 
          "area", 
          "labeling"
        ], 
        "name": "An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes", 
        "pagination": "2551", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033338304"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms3551"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24096593"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms3551", 
          "https://app.dimensions.ai/details/publication/pub.1033338304"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_588.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms3551"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms3551'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms3551'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms3551'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms3551'


     

    This table displays all metadata directly associated to this object as RDF triples.

    153 TRIPLES      22 PREDICATES      76 URIs      65 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms3551 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N76d2d835d5b5409c896c748b0fb82bbb
    4 schema:citation sg:pub.10.1007/bf01321865
    5 sg:pub.10.1038/nchem.1157
    6 sg:pub.10.1038/nchem.1707
    7 schema:datePublished 2013-10-07
    8 schema:datePublishedReg 2013-10-07
    9 schema:description Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±15/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N5aaadbffb9944882b36176e868e8854c
    14 N72ed211664864df389d36a5fe31a6320
    15 sg:journal.1043282
    16 schema:keywords ab initio calculations
    17 absence
    18 angular momentum quantum number
    19 anisotropic electronic structure
    20 anisotropy
    21 anisotropy axis
    22 area
    23 axis
    24 calculations
    25 cell labeling
    26 complexes
    27 computing
    28 determination
    29 doublet
    30 dysprosium complexes
    31 electronic structure
    32 electrostatic method
    33 electrostatic model
    34 ground state
    35 high symmetry
    36 high-level ab initio calculations
    37 imaging
    38 initio calculations
    39 intuitive strategy
    40 labeling
    41 lanthanide complexes
    42 lower symmetry
    43 magnetic anisotropy
    44 magnetic anisotropy axis
    45 magnetic resonance imaging
    46 method
    47 model
    48 momentum quantum number
    49 monometallic
    50 number
    51 observations
    52 polymetallic complexes
    53 quantum computing
    54 quantum numbers
    55 ray structure
    56 resonance imaging
    57 selection
    58 simple electrostatic method
    59 state
    60 strategies
    61 structure
    62 symmetry
    63 schema:name An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes
    64 schema:pagination 2551
    65 schema:productId N03220aac8e3a4066a97e57930111f3ed
    66 N84488cec3d02427cb3f8820171e9a6f5
    67 Ne7253daf9aad42f082928bcb85fe165d
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033338304
    69 https://doi.org/10.1038/ncomms3551
    70 schema:sdDatePublished 2022-06-01T22:11
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N516fb0e9879c47ed89a79d208ada5b97
    73 schema:url https://doi.org/10.1038/ncomms3551
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N03220aac8e3a4066a97e57930111f3ed schema:name doi
    78 schema:value 10.1038/ncomms3551
    79 rdf:type schema:PropertyValue
    80 N1a4dc531e1554ef59675e3f861a7c116 rdf:first sg:person.015541514657.63
    81 rdf:rest N7f7d2a9f45874bf085e02610ff320cd9
    82 N516fb0e9879c47ed89a79d208ada5b97 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N5aaadbffb9944882b36176e868e8854c schema:volumeNumber 4
    85 rdf:type schema:PublicationVolume
    86 N60c8a4ea0aac4d46a50914dddf293b9d rdf:first sg:person.0646127545.47
    87 rdf:rest rdf:nil
    88 N72ed211664864df389d36a5fe31a6320 schema:issueNumber 1
    89 rdf:type schema:PublicationIssue
    90 N76d2d835d5b5409c896c748b0fb82bbb rdf:first sg:person.01112641637.69
    91 rdf:rest N8267b20d7bae4ea5a02fc36593f4afe0
    92 N7f7d2a9f45874bf085e02610ff320cd9 rdf:first sg:person.016552617421.24
    93 rdf:rest N60c8a4ea0aac4d46a50914dddf293b9d
    94 N8267b20d7bae4ea5a02fc36593f4afe0 rdf:first sg:person.01357224256.54
    95 rdf:rest N1a4dc531e1554ef59675e3f861a7c116
    96 N84488cec3d02427cb3f8820171e9a6f5 schema:name pubmed_id
    97 schema:value 24096593
    98 rdf:type schema:PropertyValue
    99 Ne7253daf9aad42f082928bcb85fe165d schema:name dimensions_id
    100 schema:value pub.1033338304
    101 rdf:type schema:PropertyValue
    102 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Physical Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Other Physical Sciences
    107 rdf:type schema:DefinedTerm
    108 sg:grant.2758189 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms3551
    109 rdf:type schema:MonetaryGrant
    110 sg:journal.1043282 schema:issn 2041-1723
    111 schema:name Nature Communications
    112 schema:publisher Springer Nature
    113 rdf:type schema:Periodical
    114 sg:person.01112641637.69 schema:affiliation grid-institutes:grid.5379.8
    115 schema:familyName Chilton
    116 schema:givenName Nicholas F.
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112641637.69
    118 rdf:type schema:Person
    119 sg:person.01357224256.54 schema:affiliation grid-institutes:grid.5379.8
    120 schema:familyName Collison
    121 schema:givenName David
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357224256.54
    123 rdf:type schema:Person
    124 sg:person.015541514657.63 schema:affiliation grid-institutes:grid.5379.8
    125 schema:familyName McInnes
    126 schema:givenName Eric J. L.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015541514657.63
    128 rdf:type schema:Person
    129 sg:person.016552617421.24 schema:affiliation grid-institutes:grid.5379.8
    130 schema:familyName Winpenny
    131 schema:givenName Richard E. P.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552617421.24
    133 rdf:type schema:Person
    134 sg:person.0646127545.47 schema:affiliation grid-institutes:grid.1008.9
    135 schema:familyName Soncini
    136 schema:givenName Alessandro
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646127545.47
    138 rdf:type schema:Person
    139 sg:pub.10.1007/bf01321865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014112211
    140 https://doi.org/10.1007/bf01321865
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/nchem.1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003757257
    143 https://doi.org/10.1038/nchem.1157
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/nchem.1707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029037118
    146 https://doi.org/10.1038/nchem.1707
    147 rdf:type schema:CreativeWork
    148 grid-institutes:grid.1008.9 schema:alternateName School of Chemistry, University of Melbourne, 3010, Parkville, Victoria, Australia
    149 schema:name School of Chemistry, University of Melbourne, 3010, Parkville, Victoria, Australia
    150 rdf:type schema:Organization
    151 grid-institutes:grid.5379.8 schema:alternateName School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, M19 3PL, Manchester, UK
    152 schema:name School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, M19 3PL, Manchester, UK
    153 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...