Graphene-based in-plane micro-supercapacitors with high power and energy densities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Zhong–Shuai Wu, Khaled Parvez, Xinliang Feng, Klaus Müllen

ABSTRACT

Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm⁻² and a stack capacitance of 17.9 F cm⁻³. Further, they show a power density of 495 W cm⁻³ that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm⁻³ that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s⁻¹, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications. More... »

PAGES

2487

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms3487

DOI

http://dx.doi.org/10.1038/ncomms3487

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000283884

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24042088


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Polymer Research", 
          "id": "https://www.grid.ac/institutes/grid.419547.a", 
          "name": [
            "Max-Planck-Institut f\u00fcr Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Zhong\u2013Shuai", 
        "id": "sg:person.01034010165.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034010165.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Polymer Research", 
          "id": "https://www.grid.ac/institutes/grid.419547.a", 
          "name": [
            "Max-Planck-Institut f\u00fcr Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parvez", 
        "givenName": "Khaled", 
        "id": "sg:person.01200033442.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200033442.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Polymer Research", 
          "id": "https://www.grid.ac/institutes/grid.419547.a", 
          "name": [
            "Max-Planck-Institut f\u00fcr Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Xinliang", 
        "id": "sg:person.0750742345.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750742345.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Polymer Research", 
          "id": "https://www.grid.ac/institutes/grid.419547.a", 
          "name": [
            "Max-Planck-Institut f\u00fcr Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcllen", 
        "givenName": "Klaus", 
        "id": "sg:person.01305567747.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305567747.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200803160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000698237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2009.08.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001529494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-011-1415-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002065832", 
          "https://doi.org/10.1007/s00542-011-1415-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005665903", 
          "https://doi.org/10.1038/nnano.2011.110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008498412", 
          "https://doi.org/10.1038/nmat3260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201201292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008890442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2011.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009212819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201201948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009370543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009742023", 
          "https://doi.org/10.1038/nnano.2009.177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009742023", 
          "https://doi.org/10.1038/nnano.2009.177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200903328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014792711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200903328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014792711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014889034", 
          "https://doi.org/10.1038/nmat1368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014889034", 
          "https://doi.org/10.1038/nmat1368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl200225j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015049490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl200225j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015049490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1200770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018443135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019039848", 
          "https://doi.org/10.1038/nnano.2011.13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201100984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1216744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026127032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.920819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027117717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b801151f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030412676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033903597", 
          "https://doi.org/10.1038/nnano.2010.162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033903597", 
          "https://doi.org/10.1038/nnano.2010.162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2011.08.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037000247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1184126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039423187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1184126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039423187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(99)00296-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039653835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039924333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl102661q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043186604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl102661q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043186604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2006.07.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043272344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047825494", 
          "https://doi.org/10.1038/nmat2297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052473466", 
          "https://doi.org/10.1038/srep00247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053080665", 
          "https://doi.org/10.1038/srep00427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1194372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053456127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454703"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7\u2009\u03bcF\u2009cm\u207b\u00b2 and a stack capacitance of 17.9\u2009F\u2009cm\u207b\u00b3. Further, they show a power density of 495\u2009W\u2009cm\u207b\u00b3 that is higher than electrolytic capacitors, and an energy density of 2.5\u2009mWh\u2009cm\u207b\u00b3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000\u2009V\u2009s\u207b\u00b9, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms3487", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3797845", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Graphene-based in-plane micro-supercapacitors with high power and energy densities", 
    "pagination": "2487", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "01597621af4b700629589e57d9d467e6c08c9863ce6acfd06c93592b6fefcfb9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24042088"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms3487"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000283884"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms3487", 
      "https://app.dimensions.ai/details/publication/pub.1000283884"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms3487"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms3487'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms3487'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms3487'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms3487'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms3487 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N397032f0337a44fd97bb7cdf177b2188
4 schema:citation sg:pub.10.1007/s00542-011-1415-7
5 sg:pub.10.1038/nmat1368
6 sg:pub.10.1038/nmat2297
7 sg:pub.10.1038/nmat3260
8 sg:pub.10.1038/nnano.2009.177
9 sg:pub.10.1038/nnano.2010.162
10 sg:pub.10.1038/nnano.2011.110
11 sg:pub.10.1038/nnano.2011.13
12 sg:pub.10.1038/srep00247
13 sg:pub.10.1038/srep00427
14 https://doi.org/10.1002/adfm.201201292
15 https://doi.org/10.1002/adma.200803160
16 https://doi.org/10.1002/adma.200903328
17 https://doi.org/10.1002/adma.201100984
18 https://doi.org/10.1002/adma.201201948
19 https://doi.org/10.1016/j.electacta.2011.08.054
20 https://doi.org/10.1016/j.jpowsour.2006.07.073
21 https://doi.org/10.1016/j.jpowsour.2009.08.085
22 https://doi.org/10.1016/j.jpowsour.2011.08.007
23 https://doi.org/10.1016/s0378-7753(99)00296-7
24 https://doi.org/10.1021/nl102661q
25 https://doi.org/10.1021/nl200225j
26 https://doi.org/10.1039/b801151f
27 https://doi.org/10.1117/12.920819
28 https://doi.org/10.1126/science.1132195
29 https://doi.org/10.1126/science.1158736
30 https://doi.org/10.1126/science.1184126
31 https://doi.org/10.1126/science.1194372
32 https://doi.org/10.1126/science.1200770
33 https://doi.org/10.1126/science.1216744
34 schema:datePublished 2013-12
35 schema:datePublishedReg 2013-12-01
36 schema:description Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm⁻² and a stack capacitance of 17.9 F cm⁻³. Further, they show a power density of 495 W cm⁻³ that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm⁻³ that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s⁻¹, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N99166f45fbe94db4b213c49a03b7c1eb
41 Ne9d1f4ba4a424023884d85ebad0f9781
42 sg:journal.1043282
43 schema:name Graphene-based in-plane micro-supercapacitors with high power and energy densities
44 schema:pagination 2487
45 schema:productId N09c8a108840842a0a33f0abca70ad163
46 N2cb30e0fb39748f18a7e0d60e92def53
47 N5bb1709978f34158a67847c7b945e316
48 N7891892166e14d0cbc626bd8ff9aa7ba
49 N9d77e310e2e94dc5b8a8955e4a5b5975
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000283884
51 https://doi.org/10.1038/ncomms3487
52 schema:sdDatePublished 2019-04-10T15:39
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nef5b83e9282742de8dd716c3d372f60f
55 schema:url https://www.nature.com/articles/ncomms3487
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N09c8a108840842a0a33f0abca70ad163 schema:name doi
60 schema:value 10.1038/ncomms3487
61 rdf:type schema:PropertyValue
62 N2cb30e0fb39748f18a7e0d60e92def53 schema:name pubmed_id
63 schema:value 24042088
64 rdf:type schema:PropertyValue
65 N37962e940a8f48bbad0f4d0014f89c5b rdf:first sg:person.01200033442.44
66 rdf:rest Nf06f7af25a754f94b819335d0608ba8d
67 N397032f0337a44fd97bb7cdf177b2188 rdf:first sg:person.01034010165.58
68 rdf:rest N37962e940a8f48bbad0f4d0014f89c5b
69 N5bb1709978f34158a67847c7b945e316 schema:name nlm_unique_id
70 schema:value 101528555
71 rdf:type schema:PropertyValue
72 N7891892166e14d0cbc626bd8ff9aa7ba schema:name readcube_id
73 schema:value 01597621af4b700629589e57d9d467e6c08c9863ce6acfd06c93592b6fefcfb9
74 rdf:type schema:PropertyValue
75 N99166f45fbe94db4b213c49a03b7c1eb schema:volumeNumber 4
76 rdf:type schema:PublicationVolume
77 N9d77e310e2e94dc5b8a8955e4a5b5975 schema:name dimensions_id
78 schema:value pub.1000283884
79 rdf:type schema:PropertyValue
80 Nb3685dbd6cb84b65bbc94cb9f70df04a rdf:first sg:person.01305567747.71
81 rdf:rest rdf:nil
82 Ne9d1f4ba4a424023884d85ebad0f9781 schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 Nef5b83e9282742de8dd716c3d372f60f schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nf06f7af25a754f94b819335d0608ba8d rdf:first sg:person.0750742345.75
87 rdf:rest Nb3685dbd6cb84b65bbc94cb9f70df04a
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
92 schema:name Materials Engineering
93 rdf:type schema:DefinedTerm
94 sg:grant.3797845 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms3487
95 rdf:type schema:MonetaryGrant
96 sg:journal.1043282 schema:issn 2041-1723
97 schema:name Nature Communications
98 rdf:type schema:Periodical
99 sg:person.01034010165.58 schema:affiliation https://www.grid.ac/institutes/grid.419547.a
100 schema:familyName Wu
101 schema:givenName Zhong–Shuai
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034010165.58
103 rdf:type schema:Person
104 sg:person.01200033442.44 schema:affiliation https://www.grid.ac/institutes/grid.419547.a
105 schema:familyName Parvez
106 schema:givenName Khaled
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200033442.44
108 rdf:type schema:Person
109 sg:person.01305567747.71 schema:affiliation https://www.grid.ac/institutes/grid.419547.a
110 schema:familyName Müllen
111 schema:givenName Klaus
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305567747.71
113 rdf:type schema:Person
114 sg:person.0750742345.75 schema:affiliation https://www.grid.ac/institutes/grid.419547.a
115 schema:familyName Feng
116 schema:givenName Xinliang
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750742345.75
118 rdf:type schema:Person
119 sg:pub.10.1007/s00542-011-1415-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002065832
120 https://doi.org/10.1007/s00542-011-1415-7
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nmat1368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014889034
123 https://doi.org/10.1038/nmat1368
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nmat2297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047825494
126 https://doi.org/10.1038/nmat2297
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nmat3260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008498412
129 https://doi.org/10.1038/nmat3260
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nnano.2009.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009742023
132 https://doi.org/10.1038/nnano.2009.177
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nnano.2010.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033903597
135 https://doi.org/10.1038/nnano.2010.162
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nnano.2011.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005665903
138 https://doi.org/10.1038/nnano.2011.110
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nnano.2011.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019039848
141 https://doi.org/10.1038/nnano.2011.13
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/srep00247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052473466
144 https://doi.org/10.1038/srep00247
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/srep00427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053080665
147 https://doi.org/10.1038/srep00427
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/adfm.201201292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008890442
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/adma.200803160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000698237
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/adma.200903328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014792711
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/adma.201100984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019203078
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/adma.201201948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009370543
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.electacta.2011.08.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037000247
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jpowsour.2006.07.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043272344
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jpowsour.2009.08.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001529494
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.jpowsour.2011.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009212819
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0378-7753(99)00296-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039653835
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/nl102661q schema:sameAs https://app.dimensions.ai/details/publication/pub.1043186604
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/nl200225j schema:sameAs https://app.dimensions.ai/details/publication/pub.1015049490
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1039/b801151f schema:sameAs https://app.dimensions.ai/details/publication/pub.1030412676
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1117/12.920819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027117717
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1132195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454703
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.1158736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039924333
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.1184126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039423187
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1126/science.1194372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053456127
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1126/science.1200770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018443135
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.1216744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026127032
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.419547.a schema:alternateName Max Planck Institute for Polymer Research
190 schema:name Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...