Designing tensile ductility in metallic glasses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07-17

AUTHORS

Baran Sarac, Jan Schroers

ABSTRACT

Effectiveness of a second phase in metallic glass heterostructures to improve mechanical properties varies widely. Unfortunately, methods to fabricate such heterostructures like foams and composites do not allow controlled variation of structural features. Here we report a novel strategy, which allows us to vary heterostructural features independently, thereby enabling a systematic and quantitative study. Our approach reveals the optimal microstructural architecture for metallic glass heterostructures to achieve tensile ductility. Critical design aspect is a soft second phase, which is most effective when spacing between the second phase assumes the critical crack length of the metallic glass. This spacing should coincide with the second phase’s size, and beyond, the specific second phase morphology of the heterostructure is crucial. These toughening strategies are only effective in samples that are large compared with the spacing of the second phase. The identified design aspects provide guidance in designing tensile ductility into metallic glasses. More... »

PAGES

2158

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms3158

DOI

http://dx.doi.org/10.1038/ncomms3158

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040693298

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23863967


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 15 Prospect Street, BCT Room 217, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 15 Prospect Street, BCT Room 217, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarac", 
        "givenName": "Baran", 
        "id": "sg:person.01101576343.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101576343.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 15 Prospect Street, BCT Room 217, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 15 Prospect Street, BCT Room 217, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroers", 
        "givenName": "Jan", 
        "id": "sg:person.01145527322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024242047", 
          "https://doi.org/10.1038/nmat792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037157089", 
          "https://doi.org/10.1038/nature06598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2010.0112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016723804", 
          "https://doi.org/10.1557/jmr.2010.0112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022408182", 
          "https://doi.org/10.1038/nmat2622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011777417", 
          "https://doi.org/10.1038/ncomms1619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030636840", 
          "https://doi.org/10.1038/nmat1984"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07-17", 
    "datePublishedReg": "2013-07-17", 
    "description": "Effectiveness of a second phase in metallic glass heterostructures to improve mechanical properties varies widely. Unfortunately, methods to fabricate such heterostructures like foams and composites do not allow controlled variation of structural features. Here we report a novel strategy, which allows us to vary heterostructural features independently, thereby enabling a systematic and quantitative study. Our approach reveals the optimal microstructural architecture for metallic glass heterostructures to achieve tensile ductility. Critical design aspect is a soft second phase, which is most effective when spacing between the second phase assumes the critical crack length of the metallic glass. This spacing should coincide with the second phase\u2019s size, and beyond, the specific second phase morphology of the heterostructure is crucial. These toughening strategies are only effective in samples that are large compared with the spacing of the second phase. The identified design aspects provide guidance in designing tensile ductility into metallic glasses.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms3158", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4322384", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3092014", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3127424", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "tensile ductility", 
      "metallic glasses", 
      "soft second phase", 
      "second phase morphology", 
      "second phase size", 
      "critical crack length", 
      "design aspects", 
      "critical design aspects", 
      "toughening strategies", 
      "crack length", 
      "mechanical properties", 
      "phase size", 
      "phase morphology", 
      "ductility", 
      "such heterostructures", 
      "second phase", 
      "microstructural architecture", 
      "heterostructures", 
      "glass", 
      "spacing", 
      "composites", 
      "foam", 
      "phase", 
      "size", 
      "properties", 
      "morphology", 
      "novel strategy", 
      "method", 
      "structural features", 
      "features", 
      "architecture", 
      "effectiveness", 
      "variation", 
      "length", 
      "strategies", 
      "approach", 
      "aspects", 
      "samples", 
      "guidance", 
      "study", 
      "quantitative study"
    ], 
    "name": "Designing tensile ductility in metallic glasses", 
    "pagination": "2158", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040693298"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms3158"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23863967"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms3158", 
      "https://app.dimensions.ai/details/publication/pub.1040693298"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_597.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms3158"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms3158'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms3158'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms3158'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms3158'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      72 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms3158 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N89d913e42fb1455faa48943d82c579ed
4 schema:citation sg:pub.10.1038/nature06598
5 sg:pub.10.1038/ncomms1619
6 sg:pub.10.1038/nmat1984
7 sg:pub.10.1038/nmat2622
8 sg:pub.10.1038/nmat792
9 sg:pub.10.1557/jmr.2010.0112
10 schema:datePublished 2013-07-17
11 schema:datePublishedReg 2013-07-17
12 schema:description Effectiveness of a second phase in metallic glass heterostructures to improve mechanical properties varies widely. Unfortunately, methods to fabricate such heterostructures like foams and composites do not allow controlled variation of structural features. Here we report a novel strategy, which allows us to vary heterostructural features independently, thereby enabling a systematic and quantitative study. Our approach reveals the optimal microstructural architecture for metallic glass heterostructures to achieve tensile ductility. Critical design aspect is a soft second phase, which is most effective when spacing between the second phase assumes the critical crack length of the metallic glass. This spacing should coincide with the second phase’s size, and beyond, the specific second phase morphology of the heterostructure is crucial. These toughening strategies are only effective in samples that are large compared with the spacing of the second phase. The identified design aspects provide guidance in designing tensile ductility into metallic glasses.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf Ncb1d83784bac404cac0e4df7fea95ecb
16 Ne95a7506b194474c93a34f90fce6343a
17 sg:journal.1043282
18 schema:keywords approach
19 architecture
20 aspects
21 composites
22 crack length
23 critical crack length
24 critical design aspects
25 design aspects
26 ductility
27 effectiveness
28 features
29 foam
30 glass
31 guidance
32 heterostructures
33 length
34 mechanical properties
35 metallic glasses
36 method
37 microstructural architecture
38 morphology
39 novel strategy
40 phase
41 phase morphology
42 phase size
43 properties
44 quantitative study
45 samples
46 second phase
47 second phase morphology
48 second phase size
49 size
50 soft second phase
51 spacing
52 strategies
53 structural features
54 study
55 such heterostructures
56 tensile ductility
57 toughening strategies
58 variation
59 schema:name Designing tensile ductility in metallic glasses
60 schema:pagination 2158
61 schema:productId Nb81fcc8544e64c22a8ee7b7cadfde30e
62 Nd097e7ec2a1242eb993a4a92bddf4f80
63 Ned0d9edc663843d5a1e40d17fef86d86
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040693298
65 https://doi.org/10.1038/ncomms3158
66 schema:sdDatePublished 2022-10-01T06:38
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N2f4a88a9707f47b092f0212d4d2543bc
69 schema:url https://doi.org/10.1038/ncomms3158
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N01046759492e42b989c9d3153c323f24 rdf:first sg:person.01145527322.19
74 rdf:rest rdf:nil
75 N2f4a88a9707f47b092f0212d4d2543bc schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N89d913e42fb1455faa48943d82c579ed rdf:first sg:person.01101576343.16
78 rdf:rest N01046759492e42b989c9d3153c323f24
79 Nb81fcc8544e64c22a8ee7b7cadfde30e schema:name doi
80 schema:value 10.1038/ncomms3158
81 rdf:type schema:PropertyValue
82 Ncb1d83784bac404cac0e4df7fea95ecb schema:volumeNumber 4
83 rdf:type schema:PublicationVolume
84 Nd097e7ec2a1242eb993a4a92bddf4f80 schema:name pubmed_id
85 schema:value 23863967
86 rdf:type schema:PropertyValue
87 Ne95a7506b194474c93a34f90fce6343a schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 Ned0d9edc663843d5a1e40d17fef86d86 schema:name dimensions_id
90 schema:value pub.1040693298
91 rdf:type schema:PropertyValue
92 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
93 schema:name Engineering
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
96 schema:name Materials Engineering
97 rdf:type schema:DefinedTerm
98 sg:grant.3092014 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms3158
99 rdf:type schema:MonetaryGrant
100 sg:grant.3127424 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms3158
101 rdf:type schema:MonetaryGrant
102 sg:grant.4322384 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms3158
103 rdf:type schema:MonetaryGrant
104 sg:journal.1043282 schema:issn 2041-1723
105 schema:name Nature Communications
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.01101576343.16 schema:affiliation grid-institutes:grid.47100.32
109 schema:familyName Sarac
110 schema:givenName Baran
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101576343.16
112 rdf:type schema:Person
113 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.47100.32
114 schema:familyName Schroers
115 schema:givenName Jan
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
117 rdf:type schema:Person
118 sg:pub.10.1038/nature06598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037157089
119 https://doi.org/10.1038/nature06598
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/ncomms1619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011777417
122 https://doi.org/10.1038/ncomms1619
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmat1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030636840
125 https://doi.org/10.1038/nmat1984
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmat2622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022408182
128 https://doi.org/10.1038/nmat2622
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nmat792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024242047
131 https://doi.org/10.1038/nmat792
132 rdf:type schema:CreativeWork
133 sg:pub.10.1557/jmr.2010.0112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016723804
134 https://doi.org/10.1557/jmr.2010.0112
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.47100.32 schema:alternateName Department of Mechanical Engineering and Materials Science, Yale University, 15 Prospect Street, BCT Room 217, 06511, New Haven, Connecticut, USA
137 schema:name Department of Mechanical Engineering and Materials Science, Yale University, 15 Prospect Street, BCT Room 217, 06511, New Haven, Connecticut, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...