Integrated Mach–Zehnder interferometer for Bose–Einstein condensates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06-27

AUTHORS

T. Berrada, S. van Frank, R. Bücker, T. Schumm, J.-F. Schaff, J Schmiedmayer

ABSTRACT

Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach–Zehnder sequence with trapped Bose–Einstein condensates confined on an atom chip. Particle interactions in our Bose–Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors. More... »

PAGES

2077

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms3077

DOI

http://dx.doi.org/10.1038/ncomms3077

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001925485

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23804159


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.499369.8", 
          "name": [
            "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berrada", 
        "givenName": "T.", 
        "id": "sg:person.013405116445.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013405116445.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.499369.8", 
          "name": [
            "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Frank", 
        "givenName": "S.", 
        "id": "sg:person.01033277427.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033277427.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.499369.8", 
          "name": [
            "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00fccker", 
        "givenName": "R.", 
        "id": "sg:person.01053636773.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053636773.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.499369.8", 
          "name": [
            "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schumm", 
        "givenName": "T.", 
        "id": "sg:person.01331544520.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331544520.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.499369.8", 
          "name": [
            "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaff", 
        "givenName": "J.-F.", 
        "id": "sg:person.01215641227.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215641227.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.499369.8", 
          "name": [
            "Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmiedmayer", 
        "givenName": "J", 
        "id": "sg:person.01063602470.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063602470.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature10654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047827729", 
          "https://doi.org/10.1038/nature10654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013441281", 
          "https://doi.org/10.1038/nature08919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030554066", 
          "https://doi.org/10.1038/nature07332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004049717", 
          "https://doi.org/10.1038/nature08988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020697801", 
          "https://doi.org/10.1038/nphys941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051638229", 
          "https://doi.org/10.1038/nphys420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025265425", 
          "https://doi.org/10.1038/nphys2212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035634948", 
          "https://doi.org/10.1038/nphys1992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35051038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043414338", 
          "https://doi.org/10.1038/35051038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014702735", 
          "https://doi.org/10.1038/nphys125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026927738", 
          "https://doi.org/10.1038/nphys2245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35003132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028203939", 
          "https://doi.org/10.1038/35003132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016228869", 
          "https://doi.org/10.1038/ncomms1479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/23655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030097428", 
          "https://doi.org/10.1038/23655"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06-27", 
    "datePublishedReg": "2013-06-27", 
    "description": "Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach\u2013Zehnder sequence with trapped Bose\u2013Einstein condensates confined on an atom chip. Particle interactions in our Bose\u2013Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms3077", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6195707", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6192533", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7580580", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7580428", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "matter waves", 
      "integrated Mach-Zehnder interferometer", 
      "non-classical states", 
      "particle-wave duality", 
      "Bose-Einstein condensate", 
      "Mach-Zehnder interferometer", 
      "precision measurement devices", 
      "atom chip", 
      "photon optics", 
      "Bose-Einstein", 
      "optical interferometer", 
      "beam splitter", 
      "coherence time", 
      "coherent states", 
      "wave packets", 
      "interferometer", 
      "number fluctuations", 
      "particle interactions", 
      "phase shift", 
      "phase shifter", 
      "single device", 
      "measurement device", 
      "waves", 
      "optics", 
      "splitter", 
      "metrology", 
      "condensate", 
      "entanglement", 
      "devices", 
      "shifter", 
      "duality", 
      "state", 
      "nonlinearity", 
      "recombiners", 
      "fluctuations", 
      "chip", 
      "shift", 
      "packets", 
      "interaction", 
      "sensors", 
      "construction", 
      "potential", 
      "elements", 
      "results", 
      "way", 
      "time", 
      "sequence", 
      "analogues", 
      "goal", 
      "resources", 
      "use", 
      "factors", 
      "development"
    ], 
    "name": "Integrated Mach\u2013Zehnder interferometer for Bose\u2013Einstein condensates", 
    "pagination": "2077", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001925485"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms3077"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23804159"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms3077", 
      "https://app.dimensions.ai/details/publication/pub.1001925485"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_608.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms3077"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms3077'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms3077'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms3077'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms3077'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      93 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms3077 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author Neda4f736ecbf4d99863a231dde5749ab
5 schema:citation sg:pub.10.1038/23655
6 sg:pub.10.1038/35003132
7 sg:pub.10.1038/35051038
8 sg:pub.10.1038/nature07332
9 sg:pub.10.1038/nature08919
10 sg:pub.10.1038/nature08988
11 sg:pub.10.1038/nature10654
12 sg:pub.10.1038/ncomms1479
13 sg:pub.10.1038/nphys125
14 sg:pub.10.1038/nphys1992
15 sg:pub.10.1038/nphys2212
16 sg:pub.10.1038/nphys2245
17 sg:pub.10.1038/nphys420
18 sg:pub.10.1038/nphys941
19 schema:datePublished 2013-06-27
20 schema:datePublishedReg 2013-06-27
21 schema:description Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach–Zehnder sequence with trapped Bose–Einstein condensates confined on an atom chip. Particle interactions in our Bose–Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors.
22 schema:genre article
23 schema:isAccessibleForFree true
24 schema:isPartOf N8e52e8ab2ae54569818e154db41b108c
25 Ndc93f9e30ebd47938c0b96f001ab7973
26 sg:journal.1043282
27 schema:keywords Bose-Einstein
28 Bose-Einstein condensate
29 Mach-Zehnder interferometer
30 analogues
31 atom chip
32 beam splitter
33 chip
34 coherence time
35 coherent states
36 condensate
37 construction
38 development
39 devices
40 duality
41 elements
42 entanglement
43 factors
44 fluctuations
45 goal
46 integrated Mach-Zehnder interferometer
47 interaction
48 interferometer
49 matter waves
50 measurement device
51 metrology
52 non-classical states
53 nonlinearity
54 number fluctuations
55 optical interferometer
56 optics
57 packets
58 particle interactions
59 particle-wave duality
60 phase shift
61 phase shifter
62 photon optics
63 potential
64 precision measurement devices
65 recombiners
66 resources
67 results
68 sensors
69 sequence
70 shift
71 shifter
72 single device
73 splitter
74 state
75 time
76 use
77 wave packets
78 waves
79 way
80 schema:name Integrated Mach–Zehnder interferometer for Bose–Einstein condensates
81 schema:pagination 2077
82 schema:productId N34c5b4c566ed475293d9dd54cb242668
83 Ncf163abd24b04d048c0144fc0b58dd6d
84 Nfd829859ba14490b9b87b880698e980b
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001925485
86 https://doi.org/10.1038/ncomms3077
87 schema:sdDatePublished 2022-10-01T06:38
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nc499ceecef824438a8a12e0078bca65b
90 schema:url https://doi.org/10.1038/ncomms3077
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N11ea1e9dbbde46088902cca7f60a81e2 rdf:first sg:person.01063602470.12
95 rdf:rest rdf:nil
96 N1cf0368eb6d84c909cd021ffd9b770ed rdf:first sg:person.01215641227.85
97 rdf:rest N11ea1e9dbbde46088902cca7f60a81e2
98 N3303ccab0fe4474093c8f434769d1bd4 rdf:first sg:person.01053636773.42
99 rdf:rest N7171f0ebd6ca46b0a78f80e258b6df5e
100 N34c5b4c566ed475293d9dd54cb242668 schema:name pubmed_id
101 schema:value 23804159
102 rdf:type schema:PropertyValue
103 N7171f0ebd6ca46b0a78f80e258b6df5e rdf:first sg:person.01331544520.18
104 rdf:rest N1cf0368eb6d84c909cd021ffd9b770ed
105 N8e52e8ab2ae54569818e154db41b108c schema:volumeNumber 4
106 rdf:type schema:PublicationVolume
107 Nb7e4ba1a7ffc440799055aded41b03e5 rdf:first sg:person.01033277427.75
108 rdf:rest N3303ccab0fe4474093c8f434769d1bd4
109 Nc499ceecef824438a8a12e0078bca65b schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Ncf163abd24b04d048c0144fc0b58dd6d schema:name doi
112 schema:value 10.1038/ncomms3077
113 rdf:type schema:PropertyValue
114 Ndc93f9e30ebd47938c0b96f001ab7973 schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 Neda4f736ecbf4d99863a231dde5749ab rdf:first sg:person.013405116445.44
117 rdf:rest Nb7e4ba1a7ffc440799055aded41b03e5
118 Nfd829859ba14490b9b87b880698e980b schema:name dimensions_id
119 schema:value pub.1001925485
120 rdf:type schema:PropertyValue
121 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
125 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
128 schema:name Other Physical Sciences
129 rdf:type schema:DefinedTerm
130 sg:grant.6192533 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms3077
131 rdf:type schema:MonetaryGrant
132 sg:grant.6195707 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms3077
133 rdf:type schema:MonetaryGrant
134 sg:grant.7580428 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms3077
135 rdf:type schema:MonetaryGrant
136 sg:grant.7580580 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms3077
137 rdf:type schema:MonetaryGrant
138 sg:journal.1043282 schema:issn 2041-1723
139 schema:name Nature Communications
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01033277427.75 schema:affiliation grid-institutes:grid.499369.8
143 schema:familyName van Frank
144 schema:givenName S.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033277427.75
146 rdf:type schema:Person
147 sg:person.01053636773.42 schema:affiliation grid-institutes:grid.499369.8
148 schema:familyName Bücker
149 schema:givenName R.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053636773.42
151 rdf:type schema:Person
152 sg:person.01063602470.12 schema:affiliation grid-institutes:grid.499369.8
153 schema:familyName Schmiedmayer
154 schema:givenName J
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063602470.12
156 rdf:type schema:Person
157 sg:person.01215641227.85 schema:affiliation grid-institutes:grid.499369.8
158 schema:familyName Schaff
159 schema:givenName J.-F.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215641227.85
161 rdf:type schema:Person
162 sg:person.01331544520.18 schema:affiliation grid-institutes:grid.499369.8
163 schema:familyName Schumm
164 schema:givenName T.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331544520.18
166 rdf:type schema:Person
167 sg:person.013405116445.44 schema:affiliation grid-institutes:grid.499369.8
168 schema:familyName Berrada
169 schema:givenName T.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013405116445.44
171 rdf:type schema:Person
172 sg:pub.10.1038/23655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030097428
173 https://doi.org/10.1038/23655
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/35003132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028203939
176 https://doi.org/10.1038/35003132
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/35051038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043414338
179 https://doi.org/10.1038/35051038
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nature07332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030554066
182 https://doi.org/10.1038/nature07332
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature08919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013441281
185 https://doi.org/10.1038/nature08919
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature08988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004049717
188 https://doi.org/10.1038/nature08988
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature10654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047827729
191 https://doi.org/10.1038/nature10654
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/ncomms1479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016228869
194 https://doi.org/10.1038/ncomms1479
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nphys125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014702735
197 https://doi.org/10.1038/nphys125
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nphys1992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035634948
200 https://doi.org/10.1038/nphys1992
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nphys2212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025265425
203 https://doi.org/10.1038/nphys2212
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nphys2245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026927738
206 https://doi.org/10.1038/nphys2245
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nphys420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051638229
209 https://doi.org/10.1038/nphys420
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nphys941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020697801
212 https://doi.org/10.1038/nphys941
213 rdf:type schema:CreativeWork
214 grid-institutes:grid.499369.8 schema:alternateName Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria
215 schema:name Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...