Fundamental limitations for quantum and nanoscale thermodynamics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Michał Horodecki, Jonathan Oppenheim

ABSTRACT

The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit-when the number of particles becomes very large. Here we study thermodynamics in the opposite regime-at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle. More... »

PAGES

2059

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms3059

DOI

http://dx.doi.org/10.1038/ncomms3059

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031347512

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23800725


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Gda\u0144sk", 
          "id": "https://www.grid.ac/institutes/grid.8585.0", 
          "name": [
            "IFTIA, University of Gda\u0144sk, 80-952 Gda\u0144sk, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horodecki", 
        "givenName": "Micha\u0142", 
        "id": "sg:person.01264626304.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264626304.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "DAMTP, University of Cambridge, CB3 0WA Cambridge, UK", 
            "Department of Physics and Astronomy, University College of London, and London Interdisciplinary Network for Quantum Science, London WC1E 6BT, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oppenheim", 
        "givenName": "Jonathan", 
        "id": "sg:person.01046157753.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046157753.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1367-2630/10/3/033023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001543375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.250404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003755374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.250404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003755374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004415981", 
          "https://doi.org/10.1038/ncomms2712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007301967", 
          "https://doi.org/10.1038/nphys1100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007779406", 
          "https://doi.org/10.1038/nphys444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007779406", 
          "https://doi.org/10.1038/nphys444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009370719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009370719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01009955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011422432", 
          "https://doi.org/10.1007/bf01009955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02084158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014354438", 
          "https://doi.org/10.1007/bf02084158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02084158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014354438", 
          "https://doi.org/10.1007/bf02084158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01178071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017307896", 
          "https://doi.org/10.1007/bf01178071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01178071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017307896", 
          "https://doi.org/10.1007/bf01178071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4877(86)90067-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023235968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.240403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024111541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.240403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024111541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01125896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027370671", 
          "https://doi.org/10.1007/bf01125896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01125896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027370671", 
          "https://doi.org/10.1007/bf01125896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.062104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029059765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.062104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029059765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026422630734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033215061", 
          "https://doi.org/10.1023/a:1026422630734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035852007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035852007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.025107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.025107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043788014", 
          "https://doi.org/10.1038/39247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043788014", 
          "https://doi.org/10.1038/39247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044462605", 
          "https://doi.org/10.1038/nature10123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045883217", 
          "https://doi.org/10.1038/nature04272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045883217", 
          "https://doi.org/10.1038/nature04272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045883217", 
          "https://doi.org/10.1038/nature04272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046209288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046209288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047515169", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047515169", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/95/40004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050590711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/370446a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053083014", 
          "https://doi.org/10.1038/370446a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/13/5/053015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053392243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.436364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058014395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.463909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058041919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/12/5/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059064858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.156.343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.156.343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.4277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.4277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.2.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.2.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.050602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.050602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2009.2018325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061652292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.53.0183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063183065"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit-when the number of particles becomes very large. Here we study thermodynamics in the opposite regime-at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms3059", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Fundamental limitations for quantum and nanoscale thermodynamics", 
    "pagination": "2059", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "955581388b0ca16fa6e4c29c6f6db8fceb57a8344b27aa75dce00860ce23e364"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23800725"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms3059"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031347512"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms3059", 
      "https://app.dimensions.ai/details/publication/pub.1031347512"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms3059"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms3059'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms3059'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms3059'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms3059'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms3059 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N6dc5c79b3be4471baa347dc4fde66e6a
4 schema:citation sg:pub.10.1007/bf01009955
5 sg:pub.10.1007/bf01125896
6 sg:pub.10.1007/bf01178071
7 sg:pub.10.1007/bf02084158
8 sg:pub.10.1023/a:1026422630734
9 sg:pub.10.1038/370446a0
10 sg:pub.10.1038/39247
11 sg:pub.10.1038/nature04272
12 sg:pub.10.1038/nature10123
13 sg:pub.10.1038/ncomms2712
14 sg:pub.10.1038/nphys1100
15 sg:pub.10.1038/nphys444
16 https://app.dimensions.ai/details/publication/pub.1047515169
17 https://doi.org/10.1016/0034-4877(86)90067-4
18 https://doi.org/10.1063/1.436364
19 https://doi.org/10.1063/1.463909
20 https://doi.org/10.1088/0305-4470/12/5/007
21 https://doi.org/10.1088/1367-2630/10/3/033023
22 https://doi.org/10.1088/1367-2630/13/5/053015
23 https://doi.org/10.1103/physrev.156.343
24 https://doi.org/10.1103/physreva.40.4277
25 https://doi.org/10.1103/physreva.54.3824
26 https://doi.org/10.1103/physreva.67.062104
27 https://doi.org/10.1103/physreve.73.025107
28 https://doi.org/10.1103/physrevlett.105.130401
29 https://doi.org/10.1103/physrevlett.111.250404
30 https://doi.org/10.1103/physrevlett.2.262
31 https://doi.org/10.1103/physrevlett.74.1504
32 https://doi.org/10.1103/physrevlett.85.1799
33 https://doi.org/10.1103/physrevlett.88.050602
34 https://doi.org/10.1103/physrevlett.89.240403
35 https://doi.org/10.1103/revmodphys.81.387
36 https://doi.org/10.1109/tit.2009.2018325
37 https://doi.org/10.1147/rd.53.0183
38 https://doi.org/10.1209/0295-5075/95/40004
39 schema:datePublished 2013-12
40 schema:datePublishedReg 2013-12-01
41 schema:description The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit-when the number of particles becomes very large. Here we study thermodynamics in the opposite regime-at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N709b0d27b8784c1ab997e6d62323581b
46 N7348c7be3816478f877e14ef3535eabe
47 sg:journal.1043282
48 schema:name Fundamental limitations for quantum and nanoscale thermodynamics
49 schema:pagination 2059
50 schema:productId N27c768fb132041ef952c4ec8de9347b6
51 N46455493a2ce491ebebff774cab969e9
52 Na8355ecd22f949249ad00f1dd31bba65
53 Ndd6e45fd299c4284bd8f7478641eee17
54 Nef849b62e8a844afa75d8a734434f0d4
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031347512
56 https://doi.org/10.1038/ncomms3059
57 schema:sdDatePublished 2019-04-10T22:20
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N57945559fda643aa9420135050be42e0
60 schema:url https://www.nature.com/articles/ncomms3059
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N27c768fb132041ef952c4ec8de9347b6 schema:name nlm_unique_id
65 schema:value 101528555
66 rdf:type schema:PropertyValue
67 N46455493a2ce491ebebff774cab969e9 schema:name pubmed_id
68 schema:value 23800725
69 rdf:type schema:PropertyValue
70 N57945559fda643aa9420135050be42e0 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N6dc5c79b3be4471baa347dc4fde66e6a rdf:first sg:person.01264626304.63
73 rdf:rest Nbe984d3ba0e14ffabc32f3297bf904e1
74 N709b0d27b8784c1ab997e6d62323581b schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N7348c7be3816478f877e14ef3535eabe schema:volumeNumber 4
77 rdf:type schema:PublicationVolume
78 Na8355ecd22f949249ad00f1dd31bba65 schema:name readcube_id
79 schema:value 955581388b0ca16fa6e4c29c6f6db8fceb57a8344b27aa75dce00860ce23e364
80 rdf:type schema:PropertyValue
81 Nbe984d3ba0e14ffabc32f3297bf904e1 rdf:first sg:person.01046157753.65
82 rdf:rest rdf:nil
83 Ndd6e45fd299c4284bd8f7478641eee17 schema:name dimensions_id
84 schema:value pub.1031347512
85 rdf:type schema:PropertyValue
86 Nef849b62e8a844afa75d8a734434f0d4 schema:name doi
87 schema:value 10.1038/ncomms3059
88 rdf:type schema:PropertyValue
89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
93 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
94 rdf:type schema:DefinedTerm
95 sg:journal.1043282 schema:issn 2041-1723
96 schema:name Nature Communications
97 rdf:type schema:Periodical
98 sg:person.01046157753.65 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
99 schema:familyName Oppenheim
100 schema:givenName Jonathan
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046157753.65
102 rdf:type schema:Person
103 sg:person.01264626304.63 schema:affiliation https://www.grid.ac/institutes/grid.8585.0
104 schema:familyName Horodecki
105 schema:givenName Michał
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264626304.63
107 rdf:type schema:Person
108 sg:pub.10.1007/bf01009955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011422432
109 https://doi.org/10.1007/bf01009955
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf01125896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027370671
112 https://doi.org/10.1007/bf01125896
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf01178071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017307896
115 https://doi.org/10.1007/bf01178071
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02084158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014354438
118 https://doi.org/10.1007/bf02084158
119 rdf:type schema:CreativeWork
120 sg:pub.10.1023/a:1026422630734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033215061
121 https://doi.org/10.1023/a:1026422630734
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/370446a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053083014
124 https://doi.org/10.1038/370446a0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/39247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043788014
127 https://doi.org/10.1038/39247
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature04272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045883217
130 https://doi.org/10.1038/nature04272
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature10123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044462605
133 https://doi.org/10.1038/nature10123
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/ncomms2712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004415981
136 https://doi.org/10.1038/ncomms2712
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nphys1100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007301967
139 https://doi.org/10.1038/nphys1100
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nphys444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007779406
142 https://doi.org/10.1038/nphys444
143 rdf:type schema:CreativeWork
144 https://app.dimensions.ai/details/publication/pub.1047515169 schema:CreativeWork
145 https://doi.org/10.1016/0034-4877(86)90067-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023235968
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.436364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058014395
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.463909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058041919
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1088/0305-4470/12/5/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059064858
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1088/1367-2630/10/3/033023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001543375
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/1367-2630/13/5/053015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053392243
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrev.156.343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435160
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physreva.40.4277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060480301
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physreva.54.3824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022782738
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physreva.67.062104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029059765
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physreve.73.025107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037875904
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.105.130401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046209288
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.111.250404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003755374
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.2.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060770653
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.74.1504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810417
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.85.1799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009370719
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.88.050602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824354
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.89.240403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024111541
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/revmodphys.81.387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035852007
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tit.2009.2018325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061652292
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1147/rd.53.0183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063183065
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1209/0295-5075/95/40004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050590711
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
190 schema:name DAMTP, University of Cambridge, CB3 0WA Cambridge, UK
191 Department of Physics and Astronomy, University College of London, and London Interdisciplinary Network for Quantum Science, London WC1E 6BT, UK
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.8585.0 schema:alternateName University of Gdańsk
194 schema:name IFTIA, University of Gdańsk, 80-952 Gdańsk, Poland
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...