Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Daisuke Mayumi, Jan Dolfing, Susumu Sakata, Haruo Maeda, Yoshihiro Miyagawa, Masayuki Ikarashi, Hideyuki Tamaki, Mio Takeuchi, Cindy H. Nakatsu, Yoichi Kamagata

ABSTRACT

Deep subsurface formations (for example, high-temperature oil reservoirs) are candidate sites for carbon capture and storage technology. However, very little is known about how the subsurface microbial community would respond to an increase in CO2 pressure resulting from carbon capture and storage. Here we construct microcosms mimicking reservoir conditions (55 °C, 5 MPa) using high-temperature oil reservoir samples. Methanogenesis occurs under both high and low CO2 conditions in the microcosms. However, the increase in CO2 pressure accelerates the rate of methanogenesis to more than twice than that under low CO2 conditions. Isotope tracer and molecular analyses show that high CO2 conditions invoke acetoclastic methanogenesis in place of syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis that typically occurs in this environment (low CO2 conditions). Our results present a possibility of carbon capture and storage for enhanced microbial energy production in deep subsurface environments that can mitigate global warming and energy depletion. More... »

PAGES

1998

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms2998

DOI

http://dx.doi.org/10.1038/ncomms2998

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023058588

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23759740


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acetates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Archaea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon Dioxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon Isotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbiota", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oil and Gas Fields", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidation-Reduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Partial Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mayumi", 
        "givenName": "Daisuke", 
        "id": "sg:person.01344311215.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344311215.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Newcastle University", 
          "id": "https://www.grid.ac/institutes/grid.1006.7", 
          "name": [
            "School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dolfing", 
        "givenName": "Jan", 
        "id": "sg:person.0703543775.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703543775.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakata", 
        "givenName": "Susumu", 
        "id": "sg:person.01221041143.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221041143.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INPEX Corporation, 5-3-1 Akasaka, Minato-ku 107-6332, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maeda", 
        "givenName": "Haruo", 
        "id": "sg:person.01003246715.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003246715.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INPEX Corporation, 5-3-1 Akasaka, Minato-ku 107-6332, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyagawa", 
        "givenName": "Yoshihiro", 
        "id": "sg:person.01343112130.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343112130.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INPEX Corporation, 5-3-1 Akasaka, Minato-ku 107-6332, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ikarashi", 
        "givenName": "Masayuki", 
        "id": "sg:person.0667020315.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667020315.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamaki", 
        "givenName": "Hideyuki", 
        "id": "sg:person.0635471246.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635471246.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takeuchi", 
        "givenName": "Mio", 
        "id": "sg:person.01061163512.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061163512.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Purdue University", 
          "id": "https://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakatsu", 
        "givenName": "Cindy H.", 
        "id": "sg:person.01200441570.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200441570.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan", 
            "Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira, Sapporo 062-8517, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamagata", 
        "givenName": "Yoichi", 
        "id": "sg:person.01172064231.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172064231.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000876520", 
          "https://doi.org/10.1038/nature06484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2010.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002278776", 
          "https://doi.org/10.1038/ismej.2010.14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2010.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002278776", 
          "https://doi.org/10.1038/ismej.2010.14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.12.6578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-8252(93)90058-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006478884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-8252(93)90058-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006478884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0146-6380(92)90012-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007638374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0146-6380(92)90012-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007638374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gca.2010.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007909750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1002434330514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008953654", 
          "https://doi.org/10.1023/a:1002434330514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012309503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-7037(03)00426-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2008.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014378642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015136093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijggc.2009.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021559266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1172246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028720007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1172246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028720007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.72.3.2080-2091.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033363903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0883-2927(91)90059-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037374295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0883-2927(91)90059-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037374295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2010.02338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042195295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2010.02282.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044901281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2010.02282.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044901281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047071659", 
          "https://doi.org/10.1186/1471-2105-7-57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1137632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048054972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1108765109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048591344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2007.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052062905", 
          "https://doi.org/10.1038/ismej.2007.111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1012253108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052629961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es021038+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055494477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es021038+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055494477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0223325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055494679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0223325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055494679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es201279e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055503172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es201279e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055503172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-50-4-1601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060350321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.173.2.697-703.1991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062719841"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "Deep subsurface formations (for example, high-temperature oil reservoirs) are candidate sites for carbon capture and storage technology. However, very little is known about how the subsurface microbial community would respond to an increase in CO2 pressure resulting from carbon capture and storage. Here we construct microcosms mimicking reservoir conditions (55 \u00b0C, 5 MPa) using high-temperature oil reservoir samples. Methanogenesis occurs under both high and low CO2 conditions in the microcosms. However, the increase in CO2 pressure accelerates the rate of methanogenesis to more than twice than that under low CO2 conditions. Isotope tracer and molecular analyses show that high CO2 conditions invoke acetoclastic methanogenesis in place of syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis that typically occurs in this environment (low CO2 conditions). Our results present a possibility of carbon capture and storage for enhanced microbial energy production in deep subsurface environments that can mitigate global warming and energy depletion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms2998", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6055176", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6073826", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6109270", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6038766", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6098448", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6068211", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs", 
    "pagination": "1998", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ddaf1a24d187b213157a2cded651d85a091089fe0432ac6266f07a0c0af14be"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23759740"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms2998"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023058588"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms2998", 
      "https://app.dimensions.ai/details/publication/pub.1023058588"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms2998"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms2998'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms2998'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms2998'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms2998'


 

This table displays all metadata directly associated to this object as RDF triples.

287 TRIPLES      21 PREDICATES      67 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms2998 schema:about N09b57a785bb44492be10c931ba878512
2 N26e972a9833148c8a7c6b424e9ad504c
3 N4c5c8fe78bf5458f9e8a03fb9ba5fe0c
4 N6c5eee9028c9430db279ded04fc3c14e
5 N6e8b2c6cd2354f219c599af98026dc5c
6 N7dc7035fce53403ca9dfd643543cfdcd
7 Nabc83dde7b064857b5aab5ebfb8147b5
8 Nc9f5181364104d5a952edf0cb896e94b
9 Ndc0a1644119d4b4cbaa71e4739e9d39c
10 Nf2e876e4f10d44ddbdb135c1f0491975
11 Nfe958bcce13b44fd8c990151c435e8f5
12 anzsrc-for:09
13 anzsrc-for:0914
14 schema:author Nf079ad5886f04681be67a511dec37f8a
15 schema:citation sg:pub.10.1023/a:1002434330514
16 sg:pub.10.1038/ismej.2007.111
17 sg:pub.10.1038/ismej.2010.14
18 sg:pub.10.1038/nature06484
19 sg:pub.10.1186/1471-2105-7-57
20 https://doi.org/10.1002/bit.20347
21 https://doi.org/10.1016/0012-8252(93)90058-f
22 https://doi.org/10.1016/0146-6380(92)90012-m
23 https://doi.org/10.1016/0883-2927(91)90059-x
24 https://doi.org/10.1016/j.gca.2010.03.034
25 https://doi.org/10.1016/j.ijggc.2009.11.014
26 https://doi.org/10.1016/j.petrol.2008.12.015
27 https://doi.org/10.1016/s0016-7037(03)00426-5
28 https://doi.org/10.1021/es021038+
29 https://doi.org/10.1021/es0223325
30 https://doi.org/10.1021/es201279e
31 https://doi.org/10.1073/pnas.1012253108
32 https://doi.org/10.1073/pnas.1108765109
33 https://doi.org/10.1073/pnas.95.12.6578
34 https://doi.org/10.1093/bioinformatics/bth226
35 https://doi.org/10.1099/00207713-50-4-1601
36 https://doi.org/10.1111/j.1462-2920.2010.02282.x
37 https://doi.org/10.1111/j.1462-2920.2010.02338.x
38 https://doi.org/10.1126/science.1137632
39 https://doi.org/10.1126/science.1172246
40 https://doi.org/10.1128/aem.72.3.2080-2091.2006
41 https://doi.org/10.1128/jb.173.2.697-703.1991
42 schema:datePublished 2013-12
43 schema:datePublishedReg 2013-12-01
44 schema:description Deep subsurface formations (for example, high-temperature oil reservoirs) are candidate sites for carbon capture and storage technology. However, very little is known about how the subsurface microbial community would respond to an increase in CO2 pressure resulting from carbon capture and storage. Here we construct microcosms mimicking reservoir conditions (55 °C, 5 MPa) using high-temperature oil reservoir samples. Methanogenesis occurs under both high and low CO2 conditions in the microcosms. However, the increase in CO2 pressure accelerates the rate of methanogenesis to more than twice than that under low CO2 conditions. Isotope tracer and molecular analyses show that high CO2 conditions invoke acetoclastic methanogenesis in place of syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis that typically occurs in this environment (low CO2 conditions). Our results present a possibility of carbon capture and storage for enhanced microbial energy production in deep subsurface environments that can mitigate global warming and energy depletion.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N0e50746bc3c14c11b5f1d906da59c9af
49 N6a8d54dec4a44eb383ce57e94bcdeace
50 sg:journal.1043282
51 schema:name Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs
52 schema:pagination 1998
53 schema:productId N37ecd65a25024a12b92285fc616f84af
54 N46851d0ff3af43889e1ef60cc1b6ea3f
55 N5d41d2fc117f4bb5b7cbf971439db75e
56 N7d6fbca9d61d467a90baf63be58c6826
57 Nc90eebec2f7a4c9e934cad6118a212a4
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023058588
59 https://doi.org/10.1038/ncomms2998
60 schema:sdDatePublished 2019-04-10T20:03
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nc57c0c12f03b42d790b4084ad965c866
63 schema:url https://www.nature.com/articles/ncomms2998
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N09b57a785bb44492be10c931ba878512 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Acetates
69 rdf:type schema:DefinedTerm
70 N0e50746bc3c14c11b5f1d906da59c9af schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N1c1f1e962b5b4be9acd3cb73da6e90a4 rdf:first sg:person.0635471246.20
73 rdf:rest N96efda83f0d94a7d9cea60eb0fc03235
74 N26e972a9833148c8a7c6b424e9ad504c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Oil and Gas Fields
76 rdf:type schema:DefinedTerm
77 N37ecd65a25024a12b92285fc616f84af schema:name dimensions_id
78 schema:value pub.1023058588
79 rdf:type schema:PropertyValue
80 N46851d0ff3af43889e1ef60cc1b6ea3f schema:name nlm_unique_id
81 schema:value 101528555
82 rdf:type schema:PropertyValue
83 N4c5c8fe78bf5458f9e8a03fb9ba5fe0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Thermodynamics
85 rdf:type schema:DefinedTerm
86 N5d41d2fc117f4bb5b7cbf971439db75e schema:name pubmed_id
87 schema:value 23759740
88 rdf:type schema:PropertyValue
89 N5d80c7865b044f6b8335bf8c924aeaef rdf:first sg:person.0703543775.94
90 rdf:rest Nf70ebd473b52406dbd8001353a7f122f
91 N6a8d54dec4a44eb383ce57e94bcdeace schema:volumeNumber 4
92 rdf:type schema:PublicationVolume
93 N6c5eee9028c9430db279ded04fc3c14e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Microbiota
95 rdf:type schema:DefinedTerm
96 N6e8b2c6cd2354f219c599af98026dc5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Carbon Dioxide
98 rdf:type schema:DefinedTerm
99 N7d6fbca9d61d467a90baf63be58c6826 schema:name readcube_id
100 schema:value 6ddaf1a24d187b213157a2cded651d85a091089fe0432ac6266f07a0c0af14be
101 rdf:type schema:PropertyValue
102 N7dc7035fce53403ca9dfd643543cfdcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Carbon Isotopes
104 rdf:type schema:DefinedTerm
105 N9577360006b24f9197f42c7d91b648c5 rdf:first sg:person.01343112130.42
106 rdf:rest Nf8217c0c648b4295bf0a193ee577965e
107 N96efda83f0d94a7d9cea60eb0fc03235 rdf:first sg:person.01061163512.97
108 rdf:rest Nca068c6e38bc403a996e25d9ff229a9e
109 Nabc83dde7b064857b5aab5ebfb8147b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Archaea
111 rdf:type schema:DefinedTerm
112 Nc57c0c12f03b42d790b4084ad965c866 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nc90eebec2f7a4c9e934cad6118a212a4 schema:name doi
115 schema:value 10.1038/ncomms2998
116 rdf:type schema:PropertyValue
117 Nc9f5181364104d5a952edf0cb896e94b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Molecular Sequence Data
119 rdf:type schema:DefinedTerm
120 Nca068c6e38bc403a996e25d9ff229a9e rdf:first sg:person.01200441570.48
121 rdf:rest Nfee7aaba97924d1282ed8c41ece04726
122 Ncfbe1e74bf3d4fc897eaa9c6babbf03b rdf:first sg:person.01003246715.45
123 rdf:rest N9577360006b24f9197f42c7d91b648c5
124 Nda6d0d67465f436db5c2bde7ea634e46 schema:name INPEX Corporation, 5-3-1 Akasaka, Minato-ku 107-6332, Japan
125 rdf:type schema:Organization
126 Ndc0a1644119d4b4cbaa71e4739e9d39c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Oxidation-Reduction
128 rdf:type schema:DefinedTerm
129 Nf079ad5886f04681be67a511dec37f8a rdf:first sg:person.01344311215.81
130 rdf:rest N5d80c7865b044f6b8335bf8c924aeaef
131 Nf2e876e4f10d44ddbdb135c1f0491975 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Methane
133 rdf:type schema:DefinedTerm
134 Nf312c531eef14af0bc4ab8ef85def024 schema:name INPEX Corporation, 5-3-1 Akasaka, Minato-ku 107-6332, Japan
135 rdf:type schema:Organization
136 Nf70ebd473b52406dbd8001353a7f122f rdf:first sg:person.01221041143.61
137 rdf:rest Ncfbe1e74bf3d4fc897eaa9c6babbf03b
138 Nf8217c0c648b4295bf0a193ee577965e rdf:first sg:person.0667020315.85
139 rdf:rest N1c1f1e962b5b4be9acd3cb73da6e90a4
140 Nfc5e3b3d43bf4019bfdefc9872c1f92f schema:name INPEX Corporation, 5-3-1 Akasaka, Minato-ku 107-6332, Japan
141 rdf:type schema:Organization
142 Nfe958bcce13b44fd8c990151c435e8f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Partial Pressure
144 rdf:type schema:DefinedTerm
145 Nfee7aaba97924d1282ed8c41ece04726 rdf:first sg:person.01172064231.45
146 rdf:rest rdf:nil
147 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
148 schema:name Engineering
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
151 schema:name Resources Engineering and Extractive Metallurgy
152 rdf:type schema:DefinedTerm
153 sg:grant.6038766 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms2998
154 rdf:type schema:MonetaryGrant
155 sg:grant.6055176 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms2998
156 rdf:type schema:MonetaryGrant
157 sg:grant.6068211 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms2998
158 rdf:type schema:MonetaryGrant
159 sg:grant.6073826 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms2998
160 rdf:type schema:MonetaryGrant
161 sg:grant.6098448 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms2998
162 rdf:type schema:MonetaryGrant
163 sg:grant.6109270 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms2998
164 rdf:type schema:MonetaryGrant
165 sg:journal.1043282 schema:issn 2041-1723
166 schema:name Nature Communications
167 rdf:type schema:Periodical
168 sg:person.01003246715.45 schema:affiliation Nfc5e3b3d43bf4019bfdefc9872c1f92f
169 schema:familyName Maeda
170 schema:givenName Haruo
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003246715.45
172 rdf:type schema:Person
173 sg:person.01061163512.97 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
174 schema:familyName Takeuchi
175 schema:givenName Mio
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061163512.97
177 rdf:type schema:Person
178 sg:person.01172064231.45 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
179 schema:familyName Kamagata
180 schema:givenName Yoichi
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172064231.45
182 rdf:type schema:Person
183 sg:person.01200441570.48 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
184 schema:familyName Nakatsu
185 schema:givenName Cindy H.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200441570.48
187 rdf:type schema:Person
188 sg:person.01221041143.61 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
189 schema:familyName Sakata
190 schema:givenName Susumu
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221041143.61
192 rdf:type schema:Person
193 sg:person.01343112130.42 schema:affiliation Nf312c531eef14af0bc4ab8ef85def024
194 schema:familyName Miyagawa
195 schema:givenName Yoshihiro
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343112130.42
197 rdf:type schema:Person
198 sg:person.01344311215.81 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
199 schema:familyName Mayumi
200 schema:givenName Daisuke
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344311215.81
202 rdf:type schema:Person
203 sg:person.0635471246.20 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
204 schema:familyName Tamaki
205 schema:givenName Hideyuki
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635471246.20
207 rdf:type schema:Person
208 sg:person.0667020315.85 schema:affiliation Nda6d0d67465f436db5c2bde7ea634e46
209 schema:familyName Ikarashi
210 schema:givenName Masayuki
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667020315.85
212 rdf:type schema:Person
213 sg:person.0703543775.94 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
214 schema:familyName Dolfing
215 schema:givenName Jan
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703543775.94
217 rdf:type schema:Person
218 sg:pub.10.1023/a:1002434330514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008953654
219 https://doi.org/10.1023/a:1002434330514
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/ismej.2007.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052062905
222 https://doi.org/10.1038/ismej.2007.111
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/ismej.2010.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002278776
225 https://doi.org/10.1038/ismej.2010.14
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nature06484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000876520
228 https://doi.org/10.1038/nature06484
229 rdf:type schema:CreativeWork
230 sg:pub.10.1186/1471-2105-7-57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047071659
231 https://doi.org/10.1186/1471-2105-7-57
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1002/bit.20347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015136093
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/0012-8252(93)90058-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1006478884
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/0146-6380(92)90012-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1007638374
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/0883-2927(91)90059-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037374295
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.gca.2010.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007909750
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.ijggc.2009.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021559266
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.petrol.2008.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014378642
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/s0016-7037(03)00426-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701460
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1021/es021038+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1055494477
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1021/es0223325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055494679
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1021/es201279e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055503172
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1073/pnas.1012253108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052629961
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1073/pnas.1108765109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048591344
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1073/pnas.95.12.6578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003821328
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/bioinformatics/bth226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012309503
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1099/00207713-50-4-1601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060350321
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1111/j.1462-2920.2010.02282.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044901281
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1111/j.1462-2920.2010.02338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042195295
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1126/science.1137632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048054972
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1126/science.1172246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028720007
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1128/aem.72.3.2080-2091.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033363903
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1128/jb.173.2.697-703.1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062719841
276 rdf:type schema:CreativeWork
277 https://www.grid.ac/institutes/grid.1006.7 schema:alternateName Newcastle University
278 schema:name School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.169077.e schema:alternateName Purdue University
281 schema:name Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, USA
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.208504.b schema:alternateName National Institute of Advanced Industrial Science and Technology
284 schema:name Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
285 Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira, Sapporo 062-8517, Japan
286 Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan
287 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...