Universal current-velocity relation of skyrmion motion in chiral magnets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Junichi Iwasaki, Masahito Mochizuki, Naoto Nagaosa

ABSTRACT

Current-driven motion of the magnetic domain wall in ferromagnets is attracting intense attention because of potential applications such as racetrack memory. There, the critical current density to drive the motion is ~10(9)-10(12) A m(-2). The skyrmions recently discovered in chiral magnets have much smaller critical current density of ~10(5)-10(6) A m(-2), but the microscopic mechanism is not yet explored. Here we present a numerical simulation of Landau-Lifshitz-Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the skyrmion motion driven by the spin-transfer-torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix. Simulation results are analysed using a theory based on Thiele's equation, and it is concluded that this behaviour is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal, which enable them to avoid pinning centres. More... »

PAGES

1463

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms2442

DOI

http://dx.doi.org/10.1038/ncomms2442

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037950420

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23403564


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113 8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwasaki", 
        "givenName": "Junichi", 
        "id": "sg:person.0705107015.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705107015.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113 8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mochizuki", 
        "givenName": "Masahito", 
        "id": "sg:person.0656317163.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656317163.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113 8656, Japan", 
            "Cross-Correlated Materials Research Group (CMRG), and Correlated Electron Research Group (CERG), RIKEN-ASI, Wako, Saitama 351 0198, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagaosa", 
        "givenName": "Naoto", 
        "id": "sg:person.01026056365.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026056365.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000753350", 
          "https://doi.org/10.1038/nmat2916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.107204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001405630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.107204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001405630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.052403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010987650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.052403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010987650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014073269", 
          "https://doi.org/10.1038/nmat3311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3556558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022671559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026811477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026811477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029936903", 
          "https://doi.org/10.1038/nphys2231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030997696", 
          "https://doi.org/10.1038/ncomms1990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.r3213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032688731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.r3213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032688731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.054416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044215526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.054416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044215526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2008.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052897652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3396983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057946432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3456378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057954641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.17.535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060523941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.17.535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060523941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.3970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.3970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.30.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060777021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.30.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060777021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.21.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.21.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.40.580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063066511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.45.3889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063076810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.75.064708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063122516"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "Current-driven motion of the magnetic domain wall in ferromagnets is attracting intense attention because of potential applications such as racetrack memory. There, the critical current density to drive the motion is ~10(9)-10(12)\u2009A\u2009m(-2). The skyrmions recently discovered in chiral magnets have much smaller critical current density of ~10(5)-10(6)\u2009A\u2009m(-2), but the microscopic mechanism is not yet explored. Here we present a numerical simulation of Landau-Lifshitz-Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the skyrmion motion driven by the spin-transfer-torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix. Simulation results are analysed using a theory based on Thiele's equation, and it is concluded that this behaviour is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal, which enable them to avoid pinning centres.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms2442", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6079643", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Universal current-velocity relation of skyrmion motion in chiral magnets", 
    "pagination": "1463", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b4c88250791779fc42de809cfe4d1d40a79aedb675bf51b9fdfb9c231f205848"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23403564"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms2442"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037950420"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms2442", 
      "https://app.dimensions.ai/details/publication/pub.1037950420"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms2442"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms2442'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms2442'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms2442'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms2442'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms2442 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N76235c3a00ec46bc988829270646c428
4 schema:citation sg:pub.10.1038/nature02441
5 sg:pub.10.1038/nature05056
6 sg:pub.10.1038/nature09124
7 sg:pub.10.1038/ncomms1990
8 sg:pub.10.1038/nmat2916
9 sg:pub.10.1038/nmat3311
10 sg:pub.10.1038/nphys2231
11 https://doi.org/10.1016/0029-5582(62)90775-7
12 https://doi.org/10.1016/0304-8853(96)00062-5
13 https://doi.org/10.1016/j.physrep.2008.07.003
14 https://doi.org/10.1063/1.3396983
15 https://doi.org/10.1063/1.3456378
16 https://doi.org/10.1063/1.3556558
17 https://doi.org/10.1103/physrevb.17.535
18 https://doi.org/10.1103/physrevb.19.3970
19 https://doi.org/10.1103/physrevb.54.9353
20 https://doi.org/10.1103/physrevb.57.r3213
21 https://doi.org/10.1103/physrevb.80.054416
22 https://doi.org/10.1103/physrevb.82.052403
23 https://doi.org/10.1103/physrevb.86.054432
24 https://doi.org/10.1103/physrevlett.107.136804
25 https://doi.org/10.1103/physrevlett.30.230
26 https://doi.org/10.1103/physrevlett.92.086601
27 https://doi.org/10.1103/physrevlett.95.107204
28 https://doi.org/10.1103/revmodphys.21.541
29 https://doi.org/10.1126/science.1145799
30 https://doi.org/10.1126/science.1166767
31 https://doi.org/10.1126/science.1195709
32 https://doi.org/10.1143/jjap.40.580
33 https://doi.org/10.1143/jjap.45.3889
34 https://doi.org/10.1143/jpsj.75.064708
35 schema:datePublished 2013-12
36 schema:datePublishedReg 2013-12-01
37 schema:description Current-driven motion of the magnetic domain wall in ferromagnets is attracting intense attention because of potential applications such as racetrack memory. There, the critical current density to drive the motion is ~10(9)-10(12) A m(-2). The skyrmions recently discovered in chiral magnets have much smaller critical current density of ~10(5)-10(6) A m(-2), but the microscopic mechanism is not yet explored. Here we present a numerical simulation of Landau-Lifshitz-Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the skyrmion motion driven by the spin-transfer-torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix. Simulation results are analysed using a theory based on Thiele's equation, and it is concluded that this behaviour is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal, which enable them to avoid pinning centres.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N460385b6fb6b43bb942348d5540e1025
42 Nec1f8095d91043beb30b906ef5d6137e
43 sg:journal.1043282
44 schema:name Universal current-velocity relation of skyrmion motion in chiral magnets
45 schema:pagination 1463
46 schema:productId N518520cce10244a0941724fa9f30c5b9
47 N51a06b40620443d1a30084e02d4bb95e
48 N6f17ac0a311b40c39a9058467448842b
49 N9e0c2597479c4ff6873c678443d53ddf
50 Nf73c9c96d5ef411780898c1c904df0bb
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037950420
52 https://doi.org/10.1038/ncomms2442
53 schema:sdDatePublished 2019-04-10T15:40
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nb84de42f1ce54eef9ea721b63b335338
56 schema:url https://www.nature.com/articles/ncomms2442
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N460385b6fb6b43bb942348d5540e1025 schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N518520cce10244a0941724fa9f30c5b9 schema:name doi
63 schema:value 10.1038/ncomms2442
64 rdf:type schema:PropertyValue
65 N51a06b40620443d1a30084e02d4bb95e schema:name dimensions_id
66 schema:value pub.1037950420
67 rdf:type schema:PropertyValue
68 N6f17ac0a311b40c39a9058467448842b schema:name nlm_unique_id
69 schema:value 101528555
70 rdf:type schema:PropertyValue
71 N76235c3a00ec46bc988829270646c428 rdf:first sg:person.0705107015.63
72 rdf:rest Na94bc3108bd043e4a47f0bb9e4dc4110
73 N9e0c2597479c4ff6873c678443d53ddf schema:name readcube_id
74 schema:value b4c88250791779fc42de809cfe4d1d40a79aedb675bf51b9fdfb9c231f205848
75 rdf:type schema:PropertyValue
76 Na94bc3108bd043e4a47f0bb9e4dc4110 rdf:first sg:person.0656317163.96
77 rdf:rest Nffc4af904f55428283fd8b4a5355a8d4
78 Nb84de42f1ce54eef9ea721b63b335338 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nec1f8095d91043beb30b906ef5d6137e schema:volumeNumber 4
81 rdf:type schema:PublicationVolume
82 Nf73c9c96d5ef411780898c1c904df0bb schema:name pubmed_id
83 schema:value 23403564
84 rdf:type schema:PropertyValue
85 Nffc4af904f55428283fd8b4a5355a8d4 rdf:first sg:person.01026056365.79
86 rdf:rest rdf:nil
87 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
88 schema:name Psychology and Cognitive Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
91 schema:name Psychology
92 rdf:type schema:DefinedTerm
93 sg:grant.6079643 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms2442
94 rdf:type schema:MonetaryGrant
95 sg:journal.1043282 schema:issn 2041-1723
96 schema:name Nature Communications
97 rdf:type schema:Periodical
98 sg:person.01026056365.79 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
99 schema:familyName Nagaosa
100 schema:givenName Naoto
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026056365.79
102 rdf:type schema:Person
103 sg:person.0656317163.96 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
104 schema:familyName Mochizuki
105 schema:givenName Masahito
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656317163.96
107 rdf:type schema:Person
108 sg:person.0705107015.63 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
109 schema:familyName Iwasaki
110 schema:givenName Junichi
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705107015.63
112 rdf:type schema:Person
113 sg:pub.10.1038/nature02441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032107810
114 https://doi.org/10.1038/nature02441
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nature05056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381550
117 https://doi.org/10.1038/nature05056
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
120 https://doi.org/10.1038/nature09124
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/ncomms1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030997696
123 https://doi.org/10.1038/ncomms1990
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nmat2916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000753350
126 https://doi.org/10.1038/nmat2916
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nmat3311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014073269
129 https://doi.org/10.1038/nmat3311
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nphys2231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936903
132 https://doi.org/10.1038/nphys2231
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0029-5582(62)90775-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019864545
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.physrep.2008.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052897652
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.3396983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057946432
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.3456378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057954641
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.3556558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022671559
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.17.535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060523941
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.19.3970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060525209
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevb.57.r3213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032688731
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevb.80.054416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044215526
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevb.82.052403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010987650
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.86.054432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026811477
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.107.136804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006783661
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.30.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060777021
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.92.086601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047328087
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.95.107204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001405630
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/revmodphys.21.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837358
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1126/science.1195709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462778
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1143/jjap.40.580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063066511
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1143/jjap.45.3889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063076810
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1143/jpsj.75.064708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063122516
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
183 schema:name Cross-Correlated Materials Research Group (CMRG), and Correlated Electron Research Group (CERG), RIKEN-ASI, Wako, Saitama 351 0198, Japan
184 Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113 8656, Japan
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...