High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-01

AUTHORS

Anindya Das, Yuval Ronen, Moty Heiblum, Diana Mahalu, Andrey V Kretinin, Hadas Shtrikman

ABSTRACT

Entanglement is at the heart of the Einstein-Podolsky-Rosen paradox, where the non-locality is a necessary ingredient. Cooper pairs in superconductors can be split adiabatically, thus forming entangled electrons. Here, we fabricate such an electron splitter by contacting an aluminium superconductor strip at the centre of a suspended InAs nanowire. The nanowire is terminated at both ends with two normal metallic drains. Dividing each half of the nanowire by a gate-induced Coulomb blockaded quantum dot strongly impeds the flow of Cooper pairs due to the large charging energy, while still permitting passage of single electrons. We provide conclusive evidence of extremely high efficiency Cooper pair splitting via observing positive two-particle correlations of the conductance and the shot noise of the split electrons in the two opposite drains of the nanowire. Moreover, the actual charge of the injected quasiparticles is verified by shot noise measurements. More... »

PAGES

1165

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms2169

DOI

http://dx.doi.org/10.1038/ncomms2169

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017317032

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23132015


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "Anindya", 
        "id": "sg:person.01153722746.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153722746.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronen", 
        "givenName": "Yuval", 
        "id": "sg:person.01222036146.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222036146.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heiblum", 
        "givenName": "Moty", 
        "id": "sg:person.01071220201.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071220201.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahalu", 
        "givenName": "Diana", 
        "id": "sg:person.01026312301.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026312301.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kretinin", 
        "givenName": "Andrey V", 
        "id": "sg:person.0612660446.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612660446.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shtrikman", 
        "givenName": "Hadas", 
        "id": "sg:person.01311640117.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311640117.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1209/0295-5075/87/27011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000780970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/87/27011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000780970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.165314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003595932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.165314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003595932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.13569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006102100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.13569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006102100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.47.777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.47.777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510051010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009831764", 
          "https://doi.org/10.1007/s100510051010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013835687", 
          "https://doi.org/10.1038/nature08432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013835687", 
          "https://doi.org/10.1038/nature08432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/38241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015380894", 
          "https://doi.org/10.1038/38241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/38241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015380894", 
          "https://doi.org/10.1038/38241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.026801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019523629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.026801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019523629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.067002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019565471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.067002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019565471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10051-001-8675-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019901115", 
          "https://doi.org/10.1007/s10051-001-8675-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.125421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020942651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.125421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020942651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.237003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031036442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.237003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031036442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031442152", 
          "https://doi.org/10.1038/nphys1669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.197003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032192957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.197003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032192957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037351898", 
          "https://doi.org/10.1038/nature09277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.024501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042552496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.024501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042552496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.024501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042552496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.094512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044625072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.094512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044625072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2003-10293-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048533094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.027002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049953866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.027002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049953866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051226514", 
          "https://doi.org/10.1038/35011012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051226514", 
          "https://doi.org/10.1038/35011012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052574862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052574862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101522j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101522j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806396"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-01", 
    "datePublishedReg": "2012-01-01", 
    "description": "Entanglement is at the heart of the Einstein-Podolsky-Rosen paradox, where the non-locality is a necessary ingredient. Cooper pairs in superconductors can be split adiabatically, thus forming entangled electrons. Here, we fabricate such an electron splitter by contacting an aluminium superconductor strip at the centre of a suspended InAs nanowire. The nanowire is terminated at both ends with two normal metallic drains. Dividing each half of the nanowire by a gate-induced Coulomb blockaded quantum dot strongly impeds the flow of Cooper pairs due to the large charging energy, while still permitting passage of single electrons. We provide conclusive evidence of extremely high efficiency Cooper pair splitting via observing positive two-particle correlations of the conductance and the shot noise of the split electrons in the two opposite drains of the nanowire. Moreover, the actual charge of the injected quasiparticles is verified by shot noise measurements.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms2169", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3777025", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation", 
    "pagination": "1165", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "52816bd8729b8eddde04731fdfbcf8c0c59e932133344c70c7572828d21bac44"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23132015"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms2169"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017317032"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms2169", 
      "https://app.dimensions.ai/details/publication/pub.1017317032"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms2169"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms2169'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms2169'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms2169'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms2169'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms2169 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author Ndd526a6212f44d1c988c2730238852f6
4 schema:citation sg:pub.10.1007/s10051-001-8675-4
5 sg:pub.10.1007/s100510051010
6 sg:pub.10.1038/35011012
7 sg:pub.10.1038/38241
8 sg:pub.10.1038/nature08432
9 sg:pub.10.1038/nature09277
10 sg:pub.10.1038/nphys1669
11 https://doi.org/10.1021/nl101522j
12 https://doi.org/10.1103/physrev.47.777
13 https://doi.org/10.1103/physrevb.62.13569
14 https://doi.org/10.1103/physrevb.63.165314
15 https://doi.org/10.1103/physrevb.72.024501
16 https://doi.org/10.1103/physrevb.77.094512
17 https://doi.org/10.1103/physrevb.83.125421
18 https://doi.org/10.1103/physrevlett.104.026801
19 https://doi.org/10.1103/physrevlett.107.136801
20 https://doi.org/10.1103/physrevlett.49.91
21 https://doi.org/10.1103/physrevlett.61.50
22 https://doi.org/10.1103/physrevlett.70.1311
23 https://doi.org/10.1103/physrevlett.90.067002
24 https://doi.org/10.1103/physrevlett.93.197003
25 https://doi.org/10.1103/physrevlett.95.027002
26 https://doi.org/10.1103/physrevlett.97.237003
27 https://doi.org/10.1209/0295-5075/87/27011
28 https://doi.org/10.1209/epl/i2003-10293-9
29 schema:datePublished 2012-01
30 schema:datePublishedReg 2012-01-01
31 schema:description Entanglement is at the heart of the Einstein-Podolsky-Rosen paradox, where the non-locality is a necessary ingredient. Cooper pairs in superconductors can be split adiabatically, thus forming entangled electrons. Here, we fabricate such an electron splitter by contacting an aluminium superconductor strip at the centre of a suspended InAs nanowire. The nanowire is terminated at both ends with two normal metallic drains. Dividing each half of the nanowire by a gate-induced Coulomb blockaded quantum dot strongly impeds the flow of Cooper pairs due to the large charging energy, while still permitting passage of single electrons. We provide conclusive evidence of extremely high efficiency Cooper pair splitting via observing positive two-particle correlations of the conductance and the shot noise of the split electrons in the two opposite drains of the nanowire. Moreover, the actual charge of the injected quasiparticles is verified by shot noise measurements.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N10b53ccd5caa454286610de38466f9cd
36 Nddaf7c42b22e433d9eed51323040c5d5
37 sg:journal.1043282
38 schema:name High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation
39 schema:pagination 1165
40 schema:productId N26da66551bf542eeba05be03a1376875
41 N5a3d3246ea1c4cf2af072c8429c1a7f6
42 N8e2827f0385143b08bb2bbe9005eacbe
43 Na671997a6ee64d0ba052864fa1178d33
44 Nf8316a8d03e345d2a4de5a89f85fd280
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017317032
46 https://doi.org/10.1038/ncomms2169
47 schema:sdDatePublished 2019-04-10T19:46
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N3309b28c1a5c4d45b83d3f4fff307f4e
50 schema:url https://www.nature.com/articles/ncomms2169
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N047cdb1b9fec4d329f0dbf894b75378d rdf:first sg:person.0612660446.19
55 rdf:rest Nf29bca3a6d3549aa858068f0cc52746d
56 N10b53ccd5caa454286610de38466f9cd schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 N26da66551bf542eeba05be03a1376875 schema:name pubmed_id
59 schema:value 23132015
60 rdf:type schema:PropertyValue
61 N3309b28c1a5c4d45b83d3f4fff307f4e schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N444cdfa2ea3e43b393645d77ab37e492 rdf:first sg:person.01071220201.11
64 rdf:rest N90bbf60ae0e64571a35e6d48fc451354
65 N5a3d3246ea1c4cf2af072c8429c1a7f6 schema:name nlm_unique_id
66 schema:value 101528555
67 rdf:type schema:PropertyValue
68 N8e2827f0385143b08bb2bbe9005eacbe schema:name doi
69 schema:value 10.1038/ncomms2169
70 rdf:type schema:PropertyValue
71 N90bbf60ae0e64571a35e6d48fc451354 rdf:first sg:person.01026312301.06
72 rdf:rest N047cdb1b9fec4d329f0dbf894b75378d
73 N92d308f37e9b454e8ed45a0ee474a6d1 rdf:first sg:person.01222036146.32
74 rdf:rest N444cdfa2ea3e43b393645d77ab37e492
75 Na671997a6ee64d0ba052864fa1178d33 schema:name dimensions_id
76 schema:value pub.1017317032
77 rdf:type schema:PropertyValue
78 Ndd526a6212f44d1c988c2730238852f6 rdf:first sg:person.01153722746.43
79 rdf:rest N92d308f37e9b454e8ed45a0ee474a6d1
80 Nddaf7c42b22e433d9eed51323040c5d5 schema:volumeNumber 3
81 rdf:type schema:PublicationVolume
82 Nf29bca3a6d3549aa858068f0cc52746d rdf:first sg:person.01311640117.70
83 rdf:rest rdf:nil
84 Nf8316a8d03e345d2a4de5a89f85fd280 schema:name readcube_id
85 schema:value 52816bd8729b8eddde04731fdfbcf8c0c59e932133344c70c7572828d21bac44
86 rdf:type schema:PropertyValue
87 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
88 schema:name Technology
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
91 schema:name Nanotechnology
92 rdf:type schema:DefinedTerm
93 sg:grant.3777025 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms2169
94 rdf:type schema:MonetaryGrant
95 sg:journal.1043282 schema:issn 2041-1723
96 schema:name Nature Communications
97 rdf:type schema:Periodical
98 sg:person.01026312301.06 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
99 schema:familyName Mahalu
100 schema:givenName Diana
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026312301.06
102 rdf:type schema:Person
103 sg:person.01071220201.11 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
104 schema:familyName Heiblum
105 schema:givenName Moty
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071220201.11
107 rdf:type schema:Person
108 sg:person.01153722746.43 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
109 schema:familyName Das
110 schema:givenName Anindya
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153722746.43
112 rdf:type schema:Person
113 sg:person.01222036146.32 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
114 schema:familyName Ronen
115 schema:givenName Yuval
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222036146.32
117 rdf:type schema:Person
118 sg:person.01311640117.70 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
119 schema:familyName Shtrikman
120 schema:givenName Hadas
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311640117.70
122 rdf:type schema:Person
123 sg:person.0612660446.19 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
124 schema:familyName Kretinin
125 schema:givenName Andrey V
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612660446.19
127 rdf:type schema:Person
128 sg:pub.10.1007/s10051-001-8675-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019901115
129 https://doi.org/10.1007/s10051-001-8675-4
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s100510051010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009831764
132 https://doi.org/10.1007/s100510051010
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/35011012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051226514
135 https://doi.org/10.1038/35011012
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/38241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015380894
138 https://doi.org/10.1038/38241
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature08432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013835687
141 https://doi.org/10.1038/nature08432
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature09277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037351898
144 https://doi.org/10.1038/nature09277
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nphys1669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031442152
147 https://doi.org/10.1038/nphys1669
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1021/nl101522j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218005
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrev.47.777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714864
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.62.13569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006102100
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.63.165314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003595932
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.72.024501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042552496
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.77.094512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044625072
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.83.125421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020942651
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.104.026801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019523629
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.107.136801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052574862
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.49.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788097
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.61.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798184
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.70.1311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806396
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.90.067002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019565471
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.93.197003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032192957
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.95.027002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049953866
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.97.237003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031036442
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1209/0295-5075/87/27011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000780970
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1209/epl/i2003-10293-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048533094
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
186 schema:name Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...