Frequency stabilization in nonlinear micromechanical oscillators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-01

AUTHORS

Dario Antonio, Damián H. Zanette, Daniel López

ABSTRACT

Mechanical oscillators are present in almost every electronic device. They mainly consist of a resonating element providing an oscillating output with a specific frequency. Their ability to maintain a determined frequency in a specified period of time is the most important parameter limiting their implementation. Historically, quartz crystals have almost exclusively been used as the resonating element, but micromechanical resonators are increasingly being considered to replace them. These resonators are easier to miniaturize and allow for monolithic integration with electronics. However, as their dimensions shrink to the microscale, most mechanical resonators exhibit nonlinearities that considerably degrade the frequency stability of the oscillator. Here we demonstrate that, by coupling two different vibrational modes through an internal resonance, it is possible to stabilize the oscillation frequency of nonlinear self-sustaining micromechanical resonators. Our findings provide a new strategy for engineering low-frequency noise oscillators capitalizing on the intrinsic nonlinear phenomena of micromechanical resonators. More... »

PAGES

806

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms1813

DOI

http://dx.doi.org/10.1038/ncomms1813

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051232255

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22549835


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA", 
          "id": "http://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antonio", 
        "givenName": "Dario", 
        "id": "sg:person.0656004733.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656004733.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas, Centro At\u00f3mico Bariloche and Instituto Balseiro, 8400 Bariloche, R\u00edo Negro, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas, Centro At\u00f3mico Bariloche and Instituto Balseiro, 8400 Bariloche, R\u00edo Negro, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zanette", 
        "givenName": "Dami\u00e1n H.", 
        "id": "sg:person.0673125037.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673125037.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA", 
          "id": "http://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez", 
        "givenName": "Daniel", 
        "id": "sg:person.01353520516.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353520516.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034683964", 
          "https://doi.org/10.1038/nature02658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049855538", 
          "https://doi.org/10.1038/nnano.2008.125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045543427", 
          "https://doi.org/10.1038/nature01773"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-01", 
    "datePublishedReg": "2012-01-01", 
    "description": "Mechanical oscillators are present in almost every electronic device. They mainly consist of a resonating element providing an oscillating output with a specific frequency. Their ability to maintain a determined frequency in a specified period of time is the most important parameter limiting their implementation. Historically, quartz crystals have almost exclusively been used as the resonating element, but micromechanical resonators are increasingly being considered to replace them. These resonators are easier to miniaturize and allow for monolithic integration with electronics. However, as their dimensions shrink to the microscale, most mechanical resonators exhibit nonlinearities that considerably degrade the frequency stability of the oscillator. Here we demonstrate that, by coupling two different vibrational modes through an internal resonance, it is possible to stabilize the oscillation frequency of nonlinear self-sustaining micromechanical resonators. Our findings provide a new strategy for engineering low-frequency noise oscillators capitalizing on the intrinsic nonlinear phenomena of micromechanical resonators.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms1813", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "micromechanical resonators", 
      "resonating elements", 
      "monolithic integration", 
      "noise oscillator", 
      "electronic devices", 
      "micromechanical oscillators", 
      "mechanical resonator", 
      "resonator", 
      "frequency stability", 
      "mechanical oscillator", 
      "frequency stabilization", 
      "oscillator", 
      "different vibrational modes", 
      "quartz crystal", 
      "oscillation frequency", 
      "new strategy", 
      "electronics", 
      "specific frequency", 
      "devices", 
      "vibrational modes", 
      "microscale", 
      "important parameters", 
      "stability", 
      "frequency", 
      "integration", 
      "resonance", 
      "crystals", 
      "nonlinear micromechanical oscillator", 
      "implementation", 
      "mode", 
      "internal resonance", 
      "elements", 
      "nonlinear phenomena", 
      "strategies", 
      "ability", 
      "nonlinearity", 
      "oscillating output", 
      "output", 
      "stabilization", 
      "time", 
      "parameters", 
      "dimensions", 
      "specified period", 
      "phenomenon", 
      "period", 
      "findings", 
      "most mechanical resonators", 
      "nonlinear self-sustaining micromechanical resonators", 
      "self-sustaining micromechanical resonators", 
      "low-frequency noise oscillators", 
      "intrinsic nonlinear phenomena"
    ], 
    "name": "Frequency stabilization in nonlinear micromechanical oscillators", 
    "pagination": "806", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051232255"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms1813"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22549835"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms1813", 
      "https://app.dimensions.ai/details/publication/pub.1051232255"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_577.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms1813"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms1813'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms1813'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms1813'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms1813'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      22 PREDICATES      81 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms1813 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N1f9d0f21eb80421ca039f11f9db342ad
4 schema:citation sg:pub.10.1038/nature01773
5 sg:pub.10.1038/nature02658
6 sg:pub.10.1038/nnano.2008.125
7 schema:datePublished 2012-01
8 schema:datePublishedReg 2012-01-01
9 schema:description Mechanical oscillators are present in almost every electronic device. They mainly consist of a resonating element providing an oscillating output with a specific frequency. Their ability to maintain a determined frequency in a specified period of time is the most important parameter limiting their implementation. Historically, quartz crystals have almost exclusively been used as the resonating element, but micromechanical resonators are increasingly being considered to replace them. These resonators are easier to miniaturize and allow for monolithic integration with electronics. However, as their dimensions shrink to the microscale, most mechanical resonators exhibit nonlinearities that considerably degrade the frequency stability of the oscillator. Here we demonstrate that, by coupling two different vibrational modes through an internal resonance, it is possible to stabilize the oscillation frequency of nonlinear self-sustaining micromechanical resonators. Our findings provide a new strategy for engineering low-frequency noise oscillators capitalizing on the intrinsic nonlinear phenomena of micromechanical resonators.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf Nd7fbc3dd0c154249bed142182c2e4109
14 Nf0d67e08d4a245a9931f81e4daff9cf4
15 sg:journal.1043282
16 schema:keywords ability
17 crystals
18 devices
19 different vibrational modes
20 dimensions
21 electronic devices
22 electronics
23 elements
24 findings
25 frequency
26 frequency stability
27 frequency stabilization
28 implementation
29 important parameters
30 integration
31 internal resonance
32 intrinsic nonlinear phenomena
33 low-frequency noise oscillators
34 mechanical oscillator
35 mechanical resonator
36 micromechanical oscillators
37 micromechanical resonators
38 microscale
39 mode
40 monolithic integration
41 most mechanical resonators
42 new strategy
43 noise oscillator
44 nonlinear micromechanical oscillator
45 nonlinear phenomena
46 nonlinear self-sustaining micromechanical resonators
47 nonlinearity
48 oscillating output
49 oscillation frequency
50 oscillator
51 output
52 parameters
53 period
54 phenomenon
55 quartz crystal
56 resonance
57 resonating elements
58 resonator
59 self-sustaining micromechanical resonators
60 specific frequency
61 specified period
62 stability
63 stabilization
64 strategies
65 time
66 vibrational modes
67 schema:name Frequency stabilization in nonlinear micromechanical oscillators
68 schema:pagination 806
69 schema:productId N477ef61bdbe24746aabd58e2316823d7
70 N74b99fac5dc5414fab87b1d62b9d67d1
71 Ncd84b77308ed4fb0a5aafbb7644aec33
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051232255
73 https://doi.org/10.1038/ncomms1813
74 schema:sdDatePublished 2022-01-01T18:27
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N4eabf27c66434aba83aa22bd12f06ba0
77 schema:url https://doi.org/10.1038/ncomms1813
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N1f9d0f21eb80421ca039f11f9db342ad rdf:first sg:person.0656004733.95
82 rdf:rest N5108838a009b49d295f17322fa1c149e
83 N477ef61bdbe24746aabd58e2316823d7 schema:name doi
84 schema:value 10.1038/ncomms1813
85 rdf:type schema:PropertyValue
86 N47e38025a08443d0b05ac4eddb7abf8d rdf:first sg:person.01353520516.62
87 rdf:rest rdf:nil
88 N4eabf27c66434aba83aa22bd12f06ba0 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N5108838a009b49d295f17322fa1c149e rdf:first sg:person.0673125037.10
91 rdf:rest N47e38025a08443d0b05ac4eddb7abf8d
92 N74b99fac5dc5414fab87b1d62b9d67d1 schema:name dimensions_id
93 schema:value pub.1051232255
94 rdf:type schema:PropertyValue
95 Ncd84b77308ed4fb0a5aafbb7644aec33 schema:name pubmed_id
96 schema:value 22549835
97 rdf:type schema:PropertyValue
98 Nd7fbc3dd0c154249bed142182c2e4109 schema:volumeNumber 3
99 rdf:type schema:PublicationVolume
100 Nf0d67e08d4a245a9931f81e4daff9cf4 schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
103 schema:name Engineering
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
106 schema:name Electrical and Electronic Engineering
107 rdf:type schema:DefinedTerm
108 sg:journal.1043282 schema:issn 2041-1723
109 schema:name Nature Communications
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.01353520516.62 schema:affiliation grid-institutes:grid.187073.a
113 schema:familyName López
114 schema:givenName Daniel
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353520516.62
116 rdf:type schema:Person
117 sg:person.0656004733.95 schema:affiliation grid-institutes:grid.187073.a
118 schema:familyName Antonio
119 schema:givenName Dario
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656004733.95
121 rdf:type schema:Person
122 sg:person.0673125037.10 schema:affiliation grid-institutes:grid.423606.5
123 schema:familyName Zanette
124 schema:givenName Damián H.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673125037.10
126 rdf:type schema:Person
127 sg:pub.10.1038/nature01773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045543427
128 https://doi.org/10.1038/nature01773
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nature02658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034683964
131 https://doi.org/10.1038/nature02658
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nnano.2008.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049855538
134 https://doi.org/10.1038/nnano.2008.125
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.187073.a schema:alternateName Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA
137 schema:name Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA
138 rdf:type schema:Organization
139 grid-institutes:grid.423606.5 schema:alternateName Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Instituto Balseiro, 8400 Bariloche, Río Negro, Argentina
140 schema:name Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Instituto Balseiro, 8400 Bariloche, Río Negro, Argentina
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...